Task-Driven Species in Evolutionary Robotic Teams

  • P. Trueba
  • A. Prieto
  • P. Caamaño
  • F. Bellas
  • R. J. Duro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6686)


This paper deals with the problem of obtaining coordinated behavior in multirobot systems by evolution. More specifically, we are interested in using a method that allows the emergence of different species if they are required by the task, that is, if specialization provides an advantage in the completion of the task, without the designer having to predefine the best way to solve it. To this end, in this work we have applied a co-evolutionary algorithm called ASiCo (Asynchronous Situated Co-evolution) which is based on an open-ended evolution of the robots in their environment. In this environment the robots are born, mate and die throughout the generations as in an artificial life system. In order to show that ASiCo is capable of obtaining species automatically if they are advantageous, here we apply it to a collective gathering and construction task where homogeneous teams are suboptimal.


Multi-robot Systems Evolutionary Algorithms Coordination Collective Intelligence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agogino, A., Tumer, K.: Efficient evaluation functions for evolving coordination. Evolutionary Computation 16(2), 257–288 (2008)CrossRefGoogle Scholar
  2. 2.
    Balch, T.: Measuring robot group diversity. In: Robot teams: From diversity to polymorphism, pp. 93–135 (2002)Google Scholar
  3. 3.
    Baldassarre, G., Nolfi, S., Parisi, D.: Evolving mobile robots able to display collective behavior. Artificial Life 9(1), 255–267 (2003)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  5. 5.
    Bryant, B., Miikkulainen, R.: Neuro-evolution for adaptive teams. In: Proceedings of the Congress on Evolutionary Computation, pp. 2194–2201 (2003)Google Scholar
  6. 6.
    Floreano, D., Mitri, S., Magnenat, S., Keller, L.: Evolutionary conditions for the emergence of communication in robots. Current Biology 17(1), 514–519 (2007)CrossRefGoogle Scholar
  7. 7.
    Li, L., Martinoli, A., Yaser, A.: Learning and measuring specialization in collaborative swarm systems. Adaptive Behavior 12(3), 199–212 (2004)CrossRefGoogle Scholar
  8. 8.
    Nitschke, G., Schut, M., Eiben, A.: Collective Neuro-Evolution for Evolving Specialized Sensor Resolutions in a Multi-Rover Task. Evolutionary Intelligence 3(1), 13–29 (2010)CrossRefGoogle Scholar
  9. 9.
    Prieto, A., Caamaño, P., Bellas, F., Duro, R.J.: Population Dynamics Analysis in an Agent-based Artificial Life System for Engineering Optimization Problems. In: Proceedings CEC 2009, pp. 2724–2731 (2009)Google Scholar
  10. 10.
    Prieto, A., Becerra, J.A., Bellas, F., Duro, R.J.: Open-ended Evolution as a means to Self-Organize Heterogeneous Multi-Robot Systems in Real Time. Robotics and Autonomous Systems 58, 1282–1291 (2010)CrossRefGoogle Scholar
  11. 11.
    Prieto, A., Bellas, F., Caamaño, P., Duro, R.J.: Solving a heterogeneous fleet VRPTW with the asynchronous situated coevolution algorithm. In: Proc. ECAL (2009)Google Scholar
  12. 12.
    Watson, R., Ficici, S., Pollack, J.: Embodied Evolution: Distributing an Evolutionary Algorithm in a population of Robots. Robot. and Auton. Syst. 39(1), 1–18 (2002)CrossRefGoogle Scholar
  13. 13.
    Yong, C.H., Miikkulainen, R.: Coevolution of Role-Based Cooperation in Multiagent Systems. IEEE Trans. on Auton. Mental Develop. 1(3), 170–186 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • P. Trueba
    • 1
  • A. Prieto
    • 1
  • P. Caamaño
    • 1
  • F. Bellas
    • 1
  • R. J. Duro
    • 1
  1. 1.Integrated Group for Engineering ResearchUniversidade da CoruñaFerrolSpain

Personalised recommendations