Cognitive functions such as a perception, thinking and acting are based on the working of the brain, one of the most complex systems we know. The traditional scientific methodology, however, has proved to be not sufficient to understand the relation between brain and cognition. The aim of this paper is to review an alternative methodology – nonlinear dynamical analysis – and to demonstrate its benefit for cognitive neuroscience in cases when the usual reductionist method fails.


Lyapunov Exponent Phase Portrait Chaotic Attractor Reverse Engineering Cognitive Neuroscience 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schierwagen, A.: Brain complexity: analysis, models and limits of understanding. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5601, pp. 195–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Schierwagen, A.: On reverse engineering in the cognitive and brain sciences. Natural Comput. (2011) ( in press)Google Scholar
  3. 3.
    Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE). DARPA / IBM (2008)Google Scholar
  4. 4.
    Markram, H.: The Blue Brain Project. Nature Rev. Neurosci. 7, 153–160 (2006)CrossRefGoogle Scholar
  5. 5.
    de Garis, H., et al.: The China-Brain Project: Building China’s Artificial Brain Using an Evolved Neural Net Module Approach. In: Wang, P., Goertzel, B., Franklin, S. (eds.) Proceedings First AGI Conference, pp. 107–121. IOS Press, Amsterdam (2008)Google Scholar
  6. 6.
    de Garis, H., Shuoa, C., Goertzel, B., Ruiting, L.: A world survey of artificial brain projects, Part I: Large-scale brain simulations. Neurocomput. 74, 3–29 (2010)CrossRefGoogle Scholar
  7. 7.
    Goertzel, B., Ruiting, L., Arel, I., de Garis, H., Chen, S.: World survey of artificial brains, Part II: Biologically inspired cognitive architectures. Neurocomput. 74, 30–49 (2010)CrossRefGoogle Scholar
  8. 8.
    Edmonds, B.: Syntactic Measures of Complexity. PhD thesis, University of Manchester (1999)Google Scholar
  9. 9.
    Chu, D., Strand, R., Fjelland, R.: Theories of complexity. Complexity 8, 19–30 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gershenson, C.: Complexity. arXiv:1003.5947v1Google Scholar
  11. 11.
    Editorial. Complicated is not complex. Nature Biotechnology 17, 511 (1999)Google Scholar
  12. 12.
    Rosen, R.: Life Itself: A Comprehensive Inquiry into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York (1991)Google Scholar
  13. 13.
    Rosen, R.: Essays on Life Itself. Columbia University Press, New York (2000)Google Scholar
  14. 14.
    Kitto, K.: High End Complexity. Intern. J. Gen. Syst. 37, 689–714 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Babloyantz, A., Destexhe, A.: Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513–3517 (1986)CrossRefGoogle Scholar
  16. 16.
    Jaeger, H.: Dynamische Systeme in der Kognitionswissenschaft. Kognitionswissenschaft 5, 151–174 (1996)Google Scholar
  17. 17.
    Stam, C.J.: Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 116, 2266–2301 (2005)CrossRefGoogle Scholar
  18. 18.
    Takens, F.: Detecting strange attractors in turbulence. Lecture Notes Math., vol. 898, pp. 366–381 (1981)Google Scholar
  19. 19.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Schierwagen
    • 1
  1. 1.Institute for Computer Science, Intelligent Systems DepartmentUniversity of LeipzigLeipzigGermany

Personalised recommendations