Skip to main content

BFS Solution for Disjoint Paths in P Systems

  • Conference paper
Book cover Unconventional Computation (UC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6714))

Included in the following conference series:

Abstract

This paper continues the research on determining a maximum cardinality set of edge- and node-disjoint paths between a source cell and a target cell in P systems. With reference to the previously proposed solution [3], based on depth-first search (DFS), we propose a faster solution, based on breadth-first search (BFS), which leverages the parallel and distributed characteristics of P systems. The runtime complexity shows that, our BFS-based solution performs better than the DFS-based solution, in terms of P steps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in a network with power estimation. Soviet Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  3. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and node-disjoint paths in P systems. Electronic Proceedings in Theoretical Computer Science 40, 121–141 (2010)

    Article  Google Scholar 

  4. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  MATH  Google Scholar 

  5. Ford Jr., L.R., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal of Mathematics 8, 399–404 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. Journal of the ACM 35(4), 921–940 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. Journal of Universal Computer Science 10(5), 581–599 (2004)

    MathSciNet  Google Scholar 

  8. Kozen, D.C.: The Design and Analysis of Algorithms. Springer, New York (1991)

    MATH  Google Scholar 

  9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco (1996)

    MATH  Google Scholar 

  10. Martín-Vide, C., Păun, G., Pazos, J., Rodríguez-Patón, A.: Tissue P systems. Theor. Comput. Sci. 296(2), 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Structured modelling with hyperdag P systems: Part A. Report CDMTCS-342, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (December 2008), http://www.cs.auckland.ac.nz/CDMTCS/researchreports/342hyperdagA.pdf

  12. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Structured modelling with hyperdag P systems: Part B. Report CDMTCS-373, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (October 2009), http://www.cs.auckland.ac.nz/CDMTCS//researchreports/373hP_B.pdf

  13. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Towards structured modelling with hyperdag P systems. International Journal of Computers, Communications and Control 2, 209–222 (2010)

    Google Scholar 

  14. Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. Report CDMTCS-399, Centre for Discrete Mathematics and Theoretical Computer Science, The University of Auckland, Auckland, New Zealand (March 2011), http://www.cs.auckland.ac.nz/CDMTCS//researchreports/399radu.pdf

  15. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc., Secaucus (2002)

    Book  MATH  Google Scholar 

  16. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 1–42. Springer, Heidelberg (2006)

    Google Scholar 

  17. Păun, G., Centre, T., Science, C.: Computing with membranes. Journal of Computer and System Sciences 61, 108–143 (1998)

    Article  MathSciNet  Google Scholar 

  18. Seo, D., Thottethodi, M.: Disjoint-path routing: Efficient communication for streaming applications. In: IPDPS, pp. 1–12. IEEE, Los Alamitos (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nicolescu, R., Wu, H. (2011). BFS Solution for Disjoint Paths in P Systems. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds) Unconventional Computation. UC 2011. Lecture Notes in Computer Science, vol 6714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21341-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21341-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21340-3

  • Online ISBN: 978-3-642-21341-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics