Skip to main content

Heterotic Computing

  • Conference paper
Unconventional Computation (UC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6714))

Included in the following conference series:

Abstract

Non-classical computation has tended to consider only single computational models: neural, analog, quantum, etc. However, combined computational models can both have more computational power, and more natural programming approaches, than such ‘pure’ models alone. Here we outline a proposed new approach, which we term heterotic computing. We discuss how this might be incorporated in an accessible refinement-based computational framework for combining diverse computational models, and describe a range of physical exemplars (combinations of classical discrete, quantum discrete, classical analog, and quantum analog) that could be used to demonstrate the capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proc. IEEE Symp. Logic in Comp. Sci., pp. 415–425 (2004)

    Google Scholar 

  2. Anders, J., Browne, D.: Computational power of correlations. Phys. Rev. Lett. 102, 050502 (2009)

    Article  MathSciNet  Google Scholar 

  3. Banach, R., Jeske, C., Fraser, S., Cross, R., Poppleton, M., Stepney, S., King, S.: Approaching the formal design and development of complex systems: The retrenchment position. In: WSCS, IEEE ICECCS 2004 (2004)

    Google Scholar 

  4. Banach, R., Jeske, C., Poppleton, M., Stepney, S.: Retrenching the purse. Fundamenta Informaticae 77, 29–69 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Banach, R., Poppleton, M.: Retrenchment: an engineering variation on refinement. In: Bert, D. (ed.) B 1998. LNCS, vol. 1393, pp. 129–147. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Engineering and theoretical underpinnings of retrenchment. Sci. Comp. Prog. 67(2-3), 301–329 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bechmann, M., Sebald, A., Stepney, S.: From binary to continuous gates – and back again. In: Tempesti, G., Tyrrell, A.M., Miller, J.F. (eds.) ICES 2010. LNCS, vol. 6274, pp. 335–347. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Blakey, E.: Unconventional complexity measures for unconventional computers. Natural Computing (2010), doi:10.1007/s11047-010-9226-9

    Google Scholar 

  9. Chuang, I.L., Vandersypen, L.M.K., Zhou, X., Leung, D.W., Lloyd, S.: Experimental realization of a quantum algorithm. Nature 393(6681), 143–146 (1998)

    Article  Google Scholar 

  10. Clark, J.A., Stepney, S., Chivers, H.: Breaking the model: finalisation and a taxonomy of security attacks. ENTCS 137(2), 225–242 (2005)

    Google Scholar 

  11. Collins, D., et al.: NMR quantum computation with indirectly coupled gates. Phys. Rev. A 62(2), 022304 (2000)

    Article  Google Scholar 

  12. Cooper, D., Stepney, S., Woodcock, J.: Derivation of Z refinement proof rules: forwards and backwards rules incorporating input/output refinement. Tech. Rep. YCS-2002-347, Department of Computer Science, University of York (December 2002)

    Google Scholar 

  13. Cory, D.G., et al.: NMR based quantum information processing: Achievements and prospects. Fortschritte der Physik 48(9–11), 875–907 (2000)

    Article  Google Scholar 

  14. d’Hondt, E., Panangaden, P.: Quantum weakest preconditions. Math. Struct. Comp. Sci. 16(3), 429–451 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. DiVincenzo, D.P.: The physical implementation of quantum computation. Fortschritte der Physik 48(9-11), 771–783 (2000), arXiv:quant-ph/0002077v3

    Article  MATH  Google Scholar 

  16. Dusold, S., Sebald, A.: Dipolar recoupling under magic-angle spinning conditions. Annual Reports on NMR Spectroscopy 41, 185–264 (2000)

    Article  Google Scholar 

  17. Hines, P.: The categorical theory of self-similarity. Theory and Applications of Categories 6, 33–46 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Hines, P.: A categorical framework for finite state machines. Mathematical Structures in Computer Science 13, 451–480 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, J.A.: NMR quantum computation. Progress in Nuclear Magnetic Resonance Spectroscopy 38(4), 325–360 (2001)

    Article  Google Scholar 

  20. Lambek, J., Scott, P.: An introduction to higher-order categorical logic. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  21. Levitt, M.H.: Composite pulses. In: Grant, D.M., Harris, R.K. (eds.) Encyclopedia of Nuclear Magnetic Resonance, vol. 2, pp. 1396–1441. Wiley, Chichester (1996)

    Google Scholar 

  22. Linden, N., Barjat, H., Freeman, R.: An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer. Chemical Physics Letters 296(1-2), 61–67 (1998)

    Article  Google Scholar 

  23. Mac Lane, S.: Categories for the working mathematician. Springer, Heidelberg (1971)

    Book  MATH  Google Scholar 

  24. Roselló-Merino, M., Bechmann, M., Sebald, A., Stepney, S.: Classical computing in nuclear magnetic resonance. IJUC 6(3-4), 163–195 (2010)

    Google Scholar 

  25. Sebald, A., Bechmann, M., Calude, C.S., Abbott, A.A.: NMR-based classical implementation of the de-quantisation of Deutsch’s problem (work in progress)

    Google Scholar 

  26. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New J. Phys. 8(2), 30 (2006)

    Article  Google Scholar 

  27. Stepney, S.: The neglected pillar of material computation. Physica D: Nonlinear Phenomena 237(9), 1157–1164 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wagner, R.C., Everitt, M.S., Jones, M.L., Kendon, V.M.: Universal continuous variable quantum computation in the micromaser. In: Calude, C.S., Hagiya, M., Morita, K., Rozenberg, G., Timmis, J. (eds.) Unconventional Computation. LNCS, vol. 6079, pp. 152–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Wegner, P.: Why interaction is more powerful than algorithms. CACM 40, 80–91 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kendon, V., Sebald, A., Stepney, S., Bechmann, M., Hines, P., Wagner, R.C. (2011). Heterotic Computing. In: Calude, C.S., Kari, J., Petre, I., Rozenberg, G. (eds) Unconventional Computation. UC 2011. Lecture Notes in Computer Science, vol 6714. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21341-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21341-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21340-3

  • Online ISBN: 978-3-642-21341-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics