Least Squares Support Vector Machines for Channel Prediction in the MIMO System

  • Jerzy Martyna
Part of the Studies in Computational Intelligence book series (SCI, volume 363)


A new LS-SVM method for a multiple-input multiple-output (MIMO) channel prediction is presented. A least squares support vector machine (LS-SVM) is proposed as a prediction technique. The LS-SVM has nice properties in that the algorithm implements nonlinear decision regions, converges to minimum mean squared error solutions, and can be implemented adaptively. We also formulate a recursive implementation of the LS-SVM for channel prediction in the MIMO system. The performance of the new method is shown by a simulation of the bit error rate in the given environment.


channel estimation multiple-input multiple-output (MIMO) channel least squares support vector machine (LS-SVM) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cortes, C., Vapnik, V.: Support Vector Networks. Machine Learning 20, 273–297 (1995)zbMATHGoogle Scholar
  2. 2.
    Fernández-Getino Garcia, M.J., Rojo-Álvarez, J.L., Alonso-Atienzo, F., Martinez- Ramón, M.: Support Vector Machines for Robust Channel Estimation in OFDM. IEEE Signal Processing Letters 13(7), 397–400 (2006)CrossRefGoogle Scholar
  3. 3.
    Jindal, N., Vishwanath, S., Goldsmith, A.: On the Duality of Gaussian Multiple- Access and Broadcast Channels. IEEE Trans. on Information Theory 50(5), 768–783 (2004)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Rahman, S., Saito, M., Okada, M., Yamamoto, H.: An MC-CDMA Signal Equalization and Detection Scheme Based on Support Vector Machines. In: Proc. 1st Int. Symp. Wireless Communication Systems, pp. 11–15 (2004)Google Scholar
  5. 5.
    3GPP TR25.869 Tx Diversity Solutions for Multiple Antennas, v1.2.0 (August 2003)Google Scholar
  6. 6.
    Sánchez-Fernández, M.P., de Prado-Cumlido, M., Arenas-Garcia, J., Perez- Cruz, F.: SVM Multiregression for Nonlinear Channel Estimation in Multiple-Input Multiple-Output Systems. IEEE Trans. on Signal Processing 52(8), 2298–2307 (2004)CrossRefGoogle Scholar
  7. 7.
    Suykens, J., Lukas, L., Vandewalle, J.: Least Squares Support Vector Machine Classifiers. Neural Processing Letters 8(3), 293–300 (1999)CrossRefGoogle Scholar
  8. 8.
    Suykens, J.A.K., Vandewalle, J.: Recurrent Least Squares Vector Machines. IEEE Trans. Circuits Systems and Systems I 47(7), 11109–11114 (2000)Google Scholar
  9. 9.
    Suykens, J.A.K., Van Gestel, T., De Brabantter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific Pub. Co., Singapore (2002)zbMATHCrossRefGoogle Scholar
  10. 10.
    Vapnik, V.: Statistical Learning Theory. John Wiley and Sons, New York City (1998)zbMATHGoogle Scholar
  11. 11.
    Zheng, Y., Xiao, C.: Improved Models for the Generation of Multiple Uncorrelated Rayleigh Fading Waveforms. IEEE Trans. Commun. Letters 6(6) (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jerzy Martyna
    • 1
  1. 1.Institute of Computer ScienceJagiellonian UniversityCracowPoland

Personalised recommendations