Improving the Performance of Multi-start Search on the Traveling Salesman Problem

  • Charles R. King
  • Mark McKenney
  • Dan E. Tamir
Part of the Studies in Computational Intelligence book series (SCI, volume 363)


Constructive multi-start search algorithms are commonly used to address combinatorial optimization problems. Multi-start algorithms recover from local optima by restarting, which can lead to redundant configurations when search paths converge. In this paper, we investigate ways to minimize redundancy using record keeping and analyze several restart algorithms in the context of iterative hill climbing with applications to the traveling salesman problem. Experimental results identify the best performing restart algorithms.


Combinatorial optimization traveling salesman problem iterative hill climbing multi-start algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cormen, T.H., et al.: Introduction to Algorithms. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  2. 2.
    Johnson, D., McGeoch, L.: The Traveling Salesman Problem: A Case Study. In: Local Search in Combinatorial Optimization, pp. 215–310. John Wiley & Sons, Chichester (1997)Google Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  4. 4.
    Karhi, D., Tamir, D.E.: Caching in the TSP Search Space. In: Chien, B.-C., Hong, T.-P., Chen, S.-M., Ali, M. (eds.) IEA/AIE 2009. LNCS, vol. 5579, pp. 221–230. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Allen, D., Darwiche, A.: Optimal Time-Space Tradeoff in Probabilistic Inference. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (2003)Google Scholar
  6. 6.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Glover, F., Taillard, E., de Werra, D.: A User’s Guide to Tabu Search. Annals of Operations Research 41(1-4), 3–28 (1993)zbMATHGoogle Scholar
  8. 8.
    King, C.R.: Improving the performance of constructive multi-start search using record keeping. In: Computer Science. Texas State University, San Marcos (2010)Google Scholar
  9. 9.
    Dawson, E., Wong, D.: Information Security Practice and Experience. Springer, Heidelberg (2007)zbMATHCrossRefGoogle Scholar
  10. 10.
    Applegate, D.L., et al.: The Traveling Salesman Problem, A Computational Study. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  11. 11.
    Ambite, J., Knoblock, C.: Planning by Rewriting. Journal of Artificial Intelligence Research, 207–261 (2001)Google Scholar
  12. 12.
    Pitsoulis, L.S., Resende, M.G.C.: Greedy Randomized Adaptive Search Procedures. In: Handbook of Applied Optimization, pp. 168–183. Oxford University Press, Oxford (2001)Google Scholar
  13. 13.
    Hennessy, J.L., Patterson, D.A.: Computer Architecture. In: A Quantative Approach. Morgan Kaufmann Publishers, Inc., San Francisco (2007)Google Scholar
  14. 14.
    Reinelt, G.: TSPLIB -A traveling salesman problem library. ORSA Journal on Computing 3(4), 376–384 (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Charles R. King
    • 1
  • Mark McKenney
    • 1
  • Dan E. Tamir
    • 1
  1. 1.Department of Computer ScienceTexas State UniversityUSA

Personalised recommendations