Skip to main content

Using Class Decomposition for Building GA with Fuzzy Rule-Based Classifiers

  • Chapter
  • 592 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 363))

Abstract

A classification problem is fully partitioned into several small problems each of which is responsible for solving a fraction of the original problem. In this paper, a new approach using class-based partitioning is proposed to improve the performance of genetic-based classifiers. Rules are defined with fuzzy genes to represent variable length rules. We experimentally evaluate our approach on four different data sets and demonstrate that our algorithm can improve classification rate compared to normal Rule-based classification GAs [1] with non-partitioned techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DeJong, K., Spears, W.: Learning concept classification rules using genetic algorithms. In: International Joint Conference on Artificial Intelligence, pp. 651–656 (1991)

    Google Scholar 

  2. Corcoran, A., Sen, S.: Using real-valued genetic algorithm to evolve rule sets for classification. In: First IEEE Conference on Evolutionary Computation, Orlando, USA, pp. 120–124 (1994)

    Google Scholar 

  3. Ishibuchi, H., Nakashima, T., Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man and Cybernetics, Part B 29, 601–618 (1999)

    Article  Google Scholar 

  4. Weiss, S., Kulikowski, C.: Computer Systems that Learn Classification and Prediction Methods from Statistics. Neural Nets, Machine Learning, and Expert Systems., Morgan Kaufmann Publishers, San Mateo (1991)

    Google Scholar 

  5. Chang, Y.H., Zeng, B., Wang, X.H., Good, W.F.: Computer-aided diagnosis of breast cancer using artificial neural networks: Comparison of backpropagation and genetic algorithms. In: International Joint Conference on Neural Networks, Washington, DC, pp. 3674–3679 (1999)

    Google Scholar 

  6. Fidelis, M.V., Lopes, H.S., Freitas, A.A.: Discovering comprehensible classification rules with a genetic algorithm. In: Proceedings of Congress on Evolutionary Computation (2000)

    Google Scholar 

  7. Ghosh, A., Nath, B.: Multi-objective rule mining using genetic algorithms. Information Science 163, 123–133 (2004)

    Article  MathSciNet  Google Scholar 

  8. Tan, K.C., Yu, Q., Heng, C.M., Lee, T.H.: Evolutionary computing for knowledge discovery in medical diagnosis. Artificial Intelligence in Medicine 27, 129–154 (2003)

    Article  Google Scholar 

  9. Merelo, J., Prieto, A., Moran, F.: Optimization of classifiers using genetic algorithms. In: Patel, M., Honavar, V., Balakrishnan, K. (eds.) Advances in the Evolutionary Synthesis of Intelligent Agents. MIT Press, Cambridge (2001)

    Google Scholar 

  10. Michie, D.: Problem decomposition and the learning of skills, pp. 17–31. Springer, Berlin (1995)

    Google Scholar 

  11. Guan, S., Li, S.: Parallel growing and training of neural networks using output parallelism. IEEE Transactions on Neural Networks 13, 1–9 (2002)

    Article  Google Scholar 

  12. Jenkins, R., Yuhas, B.: A simplified neural network solution through problem decomposition: the case of the truck backerupper. IEEE Transactions on Neural Networks 4, 718–720 (1993)

    Article  Google Scholar 

  13. Lu, B., Ito, M.: Task decomposition and module combination based on class relations: a modular neural network for pattern classification. IEEE Transactions on Neural Networks 10, 1244–1256 (1999)

    Article  Google Scholar 

  14. Rodriguez, M., Escalante, D.M., Peregrin, A.: Efficient distributed genetic algorithm for rule extraction. Applied Soft Computing 11(1), 733–743 (2011)

    Article  Google Scholar 

  15. Rokach, L., Maimon, O.: Improving supervised learning by feature decomposition. In: The Second International Symposium on Foundations of Information and Knowledge Systems, pp. 178–196 (2002)

    Google Scholar 

  16. Weile, D., Michielssen, E.: The use of domain decomposition genetic algorithms exploiting model reduction for the design of frequency selective surfaces. Computer Methods in Applied Mechanics and Engineering, 439–458 (2000)

    Google Scholar 

  17. Masulli, F., Valentini, G.: Parallel non-linear dichotomizers. In: IEEE-INNS-ENNS International Joint Conference on Neural Networks, vol. 2, pp. 29–33 (2000)

    Google Scholar 

  18. Guan, S.U., Zhu, F.: A class decomposition approach for ga-based classifiers. Engineering Applications of Artificial Intelligence 18, 271–278 (2005)

    Article  Google Scholar 

  19. Apte, C., Hong, S., Hosking, J., Lepre, J., Pednault, E., Rosen, B.: Decomposition of heterogeneous classification problems. In: Liu, X., Cohen, P.R. (eds.) IDA 1997. LNCS, vol. 1280, pp. 17–28. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  20. Watson, R., Pollack, J.: Symbolic combination in genetic algorithms. In: Proceedings of the Sixth International Conference on Parallel Problem Solving from Nature, pp. 425–434 (2000)

    Google Scholar 

  21. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, MI (1975)

    Google Scholar 

  22. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review 12, 265–319 (1998)

    Article  MATH  Google Scholar 

  23. Blake, C.L., Merz, C.J.: Repository of machine learning databases (1998)

    Google Scholar 

  24. Kaya, M.: Autonomous classifiers with understandable rule using multi-objective genetic algorithms. Expert Systems with Applications 37, 3489–3494 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

El-Kafrawy, P., Sauber, A. (2011). Using Class Decomposition for Building GA with Fuzzy Rule-Based Classifiers. In: Mehrotra, K.G., Mohan, C., Oh, J.C., Varshney, P.K., Ali, M. (eds) Developing Concepts in Applied Intelligence. Studies in Computational Intelligence, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21332-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21332-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21331-1

  • Online ISBN: 978-3-642-21332-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics