Distance Metric Learning as Feature Reduction Technique for the Alzheimer’s Disease Diagnosis

  • R. Chaves
  • J. Ramírez
  • J. M. Górriz
  • D. Salas-Gonzalez
  • M. López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


In this paper we present a novel classification method of SPECT images for the development of a computer aided diagnosis (CAD) system aiming to improve the early detection of the Alzheimer’s Disease (AD). The system combines firstly template-based normalized mean square error (NMSE) features of tridimensional Regions of Interest (ROIs) t-test selected with secondly Large Margin Nearest Neighbors (LMNN), which is a distance metric technique aiming to separate examples from different classes (Controls and AD) by a Large Margin. LMNN uses a rectangular matrix (called RECT-LMNN) as an effective feature reduction technique. Moreover, the proposed system evaluates Support Vector Machine (SVM) classifier, yielding a 97.93% AD diagnosis accuracy, which reports clear improvements over existing techniques, for instance the Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) or Normalized Minimum Squared Error (NMSE) evaluated with SVM.


SPECT Brain Imaging Alzheimer’s disease Distance Metric Learning feature reduction Support Vector Machines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petrella, J.R., Coleman, R.E., Doraiswamy, P.M.: Neuroimaging and Early Diagnosis of Alzheimer’s Disease: A Look to the Future. Radiology 226, 315–336 (2003)CrossRefGoogle Scholar
  2. 2.
    English, R.J., Childs, J.: SPECT: Single-Photon Emission Computed Tomography: A Primer. Society of Nuclear Medicine (1996)Google Scholar
  3. 3.
    Fung, G., Stoeckel, J.: SVM feature selection for classification of SPECT images of Alzheimer’s disease using spatial information. Knowledge and Information Systems 11(2), 243–258 (2007)CrossRefGoogle Scholar
  4. 4.
    Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance Metric Learning for Large Margin Nearest Neighbor Classification. Journal of Machine Learning Research 10, 207–244 (2009)zbMATHGoogle Scholar
  5. 5.
    Weinberger, K., Saul, L.K.: Fast Solvers and Efficient Implementations for Distance Metric Learning. In: Proceedings of the 25th International Conference on Machine Learning (2008)Google Scholar
  6. 6.
    Saxena, P., Pavel, F.G., Quintana, J.C., Horwitz, B.: An automatic threshold-based scaling method for enhancing the usefulness of tc-HMPAO SPECT in the diagnosis of alzheimer#146s disease. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 623–630. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Burges, C.: A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2(2), 121–167 (1998)CrossRefGoogle Scholar
  8. 8.
    Duin, R.P.W.: Classifiers in almost empty spaces. In: International Conference on Pattern Recognition (ICPR), vol. 2 (2), pp. 4392–4395 (2000)Google Scholar
  9. 9.
    Vapnik, V.N.: Estimation of Dependences Based on Empirical Data. Springer, New York (1982)zbMATHGoogle Scholar
  10. 10.
    Chaves, R., Ramírez, J., Górriz, J.M., López, M., Salas-Gonzalez, D., Alvarez, I., Segovia, F.: SVM-based computer-aided diagnosis of the Alzheimer’s disease using t-test NMSE feature selection with feature correlation weighting. Neuroscience Letters 461, 293–297 (2009)CrossRefGoogle Scholar
  11. 11.
    López, M., Ramíreza, J., Górriza, J.M., Alvareza, I., Salas-Gonzalez, D., Segovia, F., Chaves, R., Padilla, P., Gómez-Río, M.: Principal Component Analysis-Based Techniques and Supervised Classification Schemes for the Early Detection of the Alzheimer’s Disease. Neurocomputing, doi:10.1016/j.neucom.2010.06.025Google Scholar
  12. 12.
    Xiang, S., Nie, F., Zhang, C.: Learning a Mahalanobis distance metric for data clustering and classification. Pattern Recognition 41, 3600–3612 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large Margin Methods for Structured and Interdependent Output Variables. Journal of Machine Learning Research 6, 1453–1484 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Chaves
    • 1
  • J. Ramírez
    • 1
  • J. M. Górriz
    • 1
  • D. Salas-Gonzalez
    • 1
  • M. López
    • 1
  1. 1.University of GranadaGranadaSpain

Personalised recommendations