Band Correction in Random Amplified Polymorphism DNA Images Using Hybrid Genetic Algorithms with Multilevel Thresholding

  • Carolina Gárate O.
  • M. Angélica Pinninghoff J.
  • Ricardo Contreras A.
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


This paper describes an approach for correcting bands in RAPD images that involves the multilevel thresholding technique and hybridized genetic algorithms. Multilevel thresholding is applied for detecting bands, and genetic algorithms are combined with Tabu Search and with Simulated Annealing, as a mechanism for correcting bands. RAPDs images are affected by various factors; among these factors, the noise and distortion that impact the quality of images, and subsequently, accuracy in interpreting the data. This work proposes hybrid methods that use genetic algorithms, for dealing with the highly combinatorial feature of this problem and, tabu search and simulated annealing, for dealing with local optimum. The results obtained by using them in this particular problem show an improvement in the fitness of individuals.


RAPD Images Polynomial multilevel thresholding Hybrid genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ait-Aoudia, S., Mahiou, R.: Medical Image Registration by Simulated Annealing and genetic algorithms. In: Geometric Modeling and Imaging, GMAI 2007, pp. 145–148 (2007)Google Scholar
  2. 2.
    Bio Rad Laboratories. Quantity One User’s Guide. Bio-Rad Laboratories (2000)Google Scholar
  3. 3.
    Burger, W.: Digital Image Processing with Java and ImageJ. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Calinski, R.B., Harabasz, J.: A Dendrite Method for Cluster Analysis. Communications in Statistics 3, 1–27 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Das, R., Laederach, A.: GelQuant User’s Manual. Stanford University, Stanford (2004)Google Scholar
  6. 6.
    Davies, J.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1, 224–227 (1979)CrossRefGoogle Scholar
  7. 7.
    Dunn, J.C.: Well Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics 4, 95–104 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Floreano, D., Mattiussi, C.: Bio-Inspired Artificial Intelligence. Theories, Methods, and Technologies. The MIT Press, Cambridge (2008)Google Scholar
  9. 9.
    Glover, F., Laguna, M.: Tabu Search. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  10. 10.
    Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality scheme assessment in the clustering process. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 265–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Halkidi, M., Vazirgiannis, M.: Clustering Validity Assessment: Finding the Optimal Partitioning of a Data Set. In: Proceedings of ICDM, California, USA (November 2001)Google Scholar
  12. 12.
    Li, X., Wei, X.: An Improved Genetic Algorithm-Simulated Annealing Hybrid Algorithm for the Optimization of Multiple Reservoirs. Water Resources Management 22, 1031–1049 (2008)CrossRefGoogle Scholar
  13. 13.
    Maulik, U., Bandyopadhyay, S.: Performance Evaluation of Some Clustering Algorithms and Validity Index. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1650–1654 (2002)CrossRefGoogle Scholar
  14. 14.
    Pinninghoff, M.A., Contreras, R., Rueda, L.: An evolutionary approach for correcting random amplified polymorphism DNA images. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 469–477. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Pinninghoff, M.A., Venegas, D., Contreras, R.: Genetic Algorithms and Tabu Search for Correcting Lanes in DNA Images. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Kittler, J. (eds.) MCPR 2010. LNCS, vol. 6256, pp. 144–153. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Robles, V., Peña, J.M., Pérez, M.S., Herrero, P., Cubo, O.: Extending the GA-EDA hybrid algorithm to study diversification and intensification in gAs and eDAs. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 339–350. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Rueda, L., Uyarte, O., Valenzuela, S., Rodriguez, J.: Processing random amplified polymorphysm DNA images using the radon transform and mathematical morphology. In: Kamel, M.S., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 1071–1081. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Rueda, L.: An efficient algorithm for optimal multilevel thresholding of irregularly sampled histograms. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) S+SSPR 2008. LNCS, vol. 5342, pp. 602–611. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carolina Gárate O.
    • 1
  • M. Angélica Pinninghoff J.
    • 1
  • Ricardo Contreras A.
    • 1
  1. 1.Department of Computer ScienceUniversity of ConcepciónChile

Personalised recommendations