Advertisement

A Prediction Model to Diabetes Using Artificial Metaplasticity

  • Alexis Marcano-Cedeño
  • Joaquín Torres
  • Diego Andina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

Diabetes is the most common disease nowadays in all populations and in all age groups. Different techniques of artificial intelligence has been applied to diabetes problem. This research proposed the artificial metaplasticity on multilayer perceptron (AMMLP) as prediction model for prediction of diabetes. The Pima Indians diabetes was used to test the proposed model AMMLP. The results obtained by AMMLP were compared with other algorithms, recently proposed by other researchers,that were applied to the same database. The best result obtained so far with the AMMLP algorithm is 89.93%.

Keywords

Frequent Pattern Confusion Matrix Multilayer Perceptron Hide Layer Node Diabetes Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohamed, E.I., Linderm, R., Perriello, G., Di Daniele, N., Poppl, S.J., De Lorenzo, A.: Predicting type 2 diabetes using an electronic nose-base artificial neural network analysis. Diabetes Nutrition & Metabolism 15(4), 215–221 (2002)Google Scholar
  2. 2.
    Shaw, J.E., Sicree, R.A., Zimmet, P.Z.: Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice 87, 4–14 (2010), doi:10.1016/j.diabres.2009.10.007CrossRefGoogle Scholar
  3. 3.
    American diabetes asociation, http://www.diabetes.org/diabetes-basics/
  4. 4.
    International Diabetes Federation, http://www.idf.org
  5. 5.
    Temurtas, H., Yumusak, N., Temurtas, F.: A comparative study on diabetes disease diagnosis using neural networks. Expert Systems with Applications 36(4), 8610–8615 (2009), doi:10.1016/j.eswa.2008.10.032CrossRefGoogle Scholar
  6. 6.
    Polat, K., Gunes, S., Aslan, A.: A cascade learning system for classification of diabetes disease: Generalized discriminant analysis and least square support vector machine. Expert Systems with Applications 34(1), 214–221 (2008), doi:10.1016/j.eswa.2006.09.012CrossRefGoogle Scholar
  7. 7.
    Polat, K., Gunes, S.: An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease. Digital Signal Processing 17(4), 702–710 (2007)CrossRefGoogle Scholar
  8. 8.
    UCI machine learning respiratory, http://archive.ics.uci.edu/ml/datasets.html.
  9. 9.
    Abraham, W.C.: Activity-dependent regulation of synaptic plasticity(metaplasticity) in the hippocampus. In: Kato, N. (ed.) The Hippocampus: Functions and Clinical Relevance, pp. 15–26. Elsevier Science, Amsterdam (1996)Google Scholar
  10. 10.
    Kinto, E., Del-Moral-Hernandez, E., Marcano-Cedeño, A., Ropero-Peláez, J.: A preliminary neural model for movement direction recognition based on biologically plausible plasticity rules. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4528, pp. 628–636. Springer, Heidelberg (2007), doi:10.1007/978-3-540- 73055-2_65Google Scholar
  11. 11.
    Andina, D., Alvarez-Vellisco, A., Jevtić, A., Fombellida, J.: Artificial metaplasticity can improve artificial neural network learning. Intelligent Automation and Soft Computing; Special Issue in Signal Processing and Soft Computing, 15(4), 681-694 (2009); ISSN: 1079-8587Google Scholar
  12. 12.
    Marcano-Cedeño, A., Quintanilla-Domínguez, J., Andina, D.: Breast cancer classification applying artificial metaplasticity algorithm. Neurocomputing, doi:10.1016/j.neucom.2010.07.019Google Scholar
  13. 13.
    Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423 (1948), doi:10.1145/584091.584093MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hagan, M.T., Demuth, H.B., Beale, M.: Neural network design. PWS Pub. Co., Boston (1996)Google Scholar
  15. 15.
    Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39, 2101–2104 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alexis Marcano-Cedeño
    • 1
  • Joaquín Torres
    • 1
  • Diego Andina
    • 1
  1. 1.Group for Automation in Signals and CommunicationsTechnical University of MadridSpain

Personalised recommendations