Advertisement

Spider Recognition by Biometric Web Analysis

  • Jaime R. Ticay-Rivas
  • Marcos del Pozo-Baños
  • William G. Eberhard
  • Jesús B. Alonso
  • Carlos M. Travieso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

Saving earth’s biodiversity for future generations is an important global task. Spiders are creatures with a fascinating behaviour, overall in the way they build their webs. This is the reason this work proposed a novel problem: the used of spider webs as a source of information for specie recognition. To do so, biometric techniques such as image processing tools, Principal Component Analysis, and Support Vector Machine have been used to build a spider web identification system. With a database built of images from spider webs of three species, the system reached a best performance of 95,44 % on a 10 K-Folds cross-validation procedure.

Keywords

Spider webs spider classification principal component analysis support vector machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sytnik, K.M.: Preservation of biological diversity: Top-priority tasks of society and state. Ukrainian Journal of Physical Optics 11(suppl.1), S2–S10 (2010)CrossRefGoogle Scholar
  2. 2.
    Carvalho, J.C., Cardoso, P., Crespo, L.C., Henriques, S., Carvalho, R., Gomes, P.: Biogeographic patterns of spiders in coastal dunes along a gradient of mediterraneity. Biodiversity and Conservation, 1–22 (2011)Google Scholar
  3. 3.
    Johnston, J.M.: The contribution of microarthropods to aboveground food webs: A review and model of belowground transfer in a coniferous forest. American Midland Naturalist 143, 226–238 (2000)CrossRefGoogle Scholar
  4. 4.
    Peterson, A.T., Osborne, D.R., Taylor, D.H.: Tree trunk arthropod faunas as food resources for birds. Ohio Journal of Science 89(1), 23–25 (1989)Google Scholar
  5. 5.
    Cardoso, P., Arnedo, M.A., Triantis, K.A., Borges, P.A.V.: Drivers of diversity in Macaronesian spiders and the role of species extinctions. J. Biogeogr. 37, 1034–1046 (2010)CrossRefGoogle Scholar
  6. 6.
    Finch, O.-D., Blick, T., Schuldt, A.: Macroecological patterns of spider species richness across Europe. Biodivers. Conserv. 17, 2849–2868 (2008)CrossRefGoogle Scholar
  7. 7.
    Eberhard, W.G.: Behavioral Characters for the Higher Classification of Orb-Weaving Spiders. Evolution 36(5), 1067–1095 (1982); Society for the Study of EvolutionCrossRefGoogle Scholar
  8. 8.
    Eberhard, W.G.: Early Stages of Orb Construction by Philoponella Vicina, Leucauge Mariana, and Nephila Clavipes (Araneae, Uloboridae and Tetragnathidae), and Their Phylogenetic Implications. Journal of Arachnology 18(2), 205–234 (1990)Google Scholar
  9. 9.
    Eberhard, W.G.: Computer Simulation of Orb-Web Construction. J. American Zoologist, 229–238 (February 1,1969)Google Scholar
  10. 10.
    Suresh, P.B., Zschokke, S.: A computerised method to observe spider web building behaviour in a semi-natural light environment. In: 19th European Colloquium of Arachnology, Aarhus, Denmark (2000)Google Scholar
  11. 11.
    Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2002)Google Scholar
  12. 12.
    Hu, J., Si, J., Olson, B.P., He, J.: Feature detection in motor cortical spikes by principal component analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering 13(3), 256–262 (2005)CrossRefGoogle Scholar
  13. 13.
    Zhang, Q., Leung, Y.W.: A class of learning algorithms for principal component analysis and minor component analysis. IEEE Transactions on Neural Networks 11(1), 200–204 (2000)CrossRefGoogle Scholar
  14. 14.
    Langley, P., Bowers, E.J., Murray, A.: Principal Component Analysis as a Tool for Analyzing Beat-to-Beat Changes in ECG Features: Application to ECG-Derived Respiration. IEEE Transactions on Biomedical Engineering 57(4), 821–829 (2010)CrossRefGoogle Scholar
  15. 15.
    Yao, H., Tian, L.: A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction. IEEE Transactions on Geoscience and Remote Sensing 41(6), 1469–1478 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Liu, N., Wang, H.: Feature Extraction with Genetic Algorithms Based Nonlinear Principal Component Analysis for Face Recognition. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 461–464 (2006)Google Scholar
  17. 17.
    Vapnik, V.: The Nature of Statistical learning Theory. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  18. 18.
    Kevman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic models. The MIT Press, Cambridge (2001)Google Scholar
  19. 19.
    Schölkopfy, B., Smola, A.J.: Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)Google Scholar
  20. 20.
    Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines. World Scientific, Singapore (2002); ISBN 981-238-151-1CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jaime R. Ticay-Rivas
    • 1
  • Marcos del Pozo-Baños
    • 1
  • William G. Eberhard
    • 2
  • Jesús B. Alonso
    • 1
  • Carlos M. Travieso
    • 1
  1. 1.Signals and Communications Department Institute for Technological Development and Innovation in CommunicationsUniversity of Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Smithsonian Tropical Research Institute and Escuela de BiologiaUniversidad de Costa Rica Ciudad UniversitariaCosta Rica

Personalised recommendations