Advertisement

Simulating a Rock-Scissors-Paper Bacterial Game with a Discrete Cellular Automaton

  • Pablo Gómez Esteban
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

This paper describes some of the results obtained after the design and implementation of a discrete cellular automata simulating the generation, degradation and diffusion of particles in a two dimensional grid where different colonies of bacteria coexist and interact. This lattice-based simulator use a random walk-based algorithm to diffuse particles in a 2D discrete lattice. As first results, we analyze and show the oscillatory dynamical behavior of 3 colonies of bacteria competing in a non-transitive relationship analogous to a Rock-Scissors-Paper game (Rock bacteria beats Scissors bacteria that beats Paper bacteria; and Paper beats Rock bacteria). The interaction and communication between bacteria is done with the quorum sensing process through the generation and diffusion of three small molecules called autoinducers. These are the first results obtained from the first version of a general simulator able to model some of the complex molecular information processing and rich communication processes in synthetic bacterial ecosystems.

Keywords

bacterial computing cellular automata lattice-based simulation rock-scissors-paper game quorum sensing particle diffusion autoinducers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    BACTOCOM project, www.bactocom.eu
  2. 2.
    Llosa, M., de la Cruz, F.: Bacterial conjugation: a potential tool for genomic engineering. Research in Microbiology 156(1), 1–6 (2005)CrossRefGoogle Scholar
  3. 3.
    Frederick, Song, H., Ozaki, J., Collins, C.H., Barnet, M., Arnold, F.H., Quake, S.R., You, L.: A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems Biology (April 2008)Google Scholar
  4. 4.
    Kerr, B., Riley, M.A., Marcus: Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418, 171–174 (2002)CrossRefGoogle Scholar
  5. 5.
    Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., Weiss, R.: A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005)CrossRefGoogle Scholar
  6. 6.
    Waters, C.M., Bassler, B.L.: Quorum sensing: cell-to-cell communication in bacteria. Annual review of cell and developmental biology 21(1), 319–346 (2005)CrossRefGoogle Scholar
  7. 7.
    Freiwald, U., Weimar, J.R.: The Java based cellular automata simulation system, JCASim (2002)Google Scholar
  8. 8.
    Weimar, J.R.: Simulating reaction-diffusion cellular automata with JCASim. Discrete Modelling and Discrete Algorithms in Continuum Mechanics (2001)Google Scholar
  9. 9.
    Bandman, O.: A hybrid approach to reaction-diffusion processes simulation. In: Malyshkin, V.E. (ed.) PaCT 2001. LNCS, vol. 2127, pp. 1–6. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Chang, I., Gilbert, E.S., Eliashberg, N., Keasling, J.D.: A three-dimensional, stochastic simulation of biofilm growth and transport-related factors that affect structure. Microbiology 149, 2859–2871 (2003)CrossRefGoogle Scholar
  11. 11.
    Kim, T.-H.H., Jung, S.H.H., Cho, K.-H.H.: Investigations into the design principles in the chemotactic behavior of Escherichia coli. Biosystems 91(1), 171–182 (2008)CrossRefGoogle Scholar
  12. 12.
    Picioreanu, C., van Loosdrecht, M.C.M., Heijnen, J.J.: A new combined differential-discrete cellular automaton approach for biofilm modeling: Application for growth in gel beads. Biotechnol. Bioeng. 57(6), 718–731 (1998)CrossRefGoogle Scholar
  13. 13.
    Kreft, J.-U., Booth, G., Wimpenny, J.W.T.: BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144(12), 3275–3287 (1998)CrossRefGoogle Scholar
  14. 14.
    Ginovart, M., López, D., Valls, J.: INDISIM, an individual-based discrete simulation model to study bacterial cultures. Journal of Theoretical Biology 214(2), 305–319 (2002)CrossRefGoogle Scholar
  15. 15.
    Czárán, T.L., Hoekstra, R.F., Pagie, L.: Chemical warfare between microbes promotes biodiversity. Proceedings of the National Academy of Sciences of the United States of America 99(2), 786–790 (2002)CrossRefGoogle Scholar
  16. 16.
    Melke, P., Sahlin, P., Levchenko, A., Jönsson, H.: A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Computational Biology 6(6), e1000819 (2010)Google Scholar
  17. 17.
    Southampton University Team. iGem (2009), http://2009.igem.org/Team:Southampton

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pablo Gómez Esteban
    • 1
  • Alfonso Rodríguez-Patón
    • 1
  1. 1.Departamento de Inteligencia ArtificialUniversidad Politécnica de Madrid (UPM)Spain

Personalised recommendations