Bio-inspired Color Image Segmentation on the GPU (BioSPCIS)

  • M. Martínez-Zarzuela
  • F. J. Díaz-Pernas
  • M. Antón-Rodríguez
  • F. Perozo-Rondón
  • D. González-Ortega
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


In this paper we introduce a neural architecture for multiple scale color image segmentation on a Graphics Processing Unit (GPU): the BioSPCIS (Bio-Inspired Stream Processing Color Image Segmentation) architecture. BioSPCIS has been designed according to the physiological organization of the cells on the mammalian visual system and psychophysical studies about the interaction of these cells for image segmentation. Quality of the segmentation was measured against hand-labelled segmentations from the Berkeley Segmentation Dataset. Using a stream processing model and hardware suitable for its execution, we are able to compute the activity of several neurons in the visual path system simultaneously. All the 100 test images in the Berkeley database can be processed in 5 minutes using this architecture.


Graphic Processing Unit Central Processing Unit Single Instruction Multiple Data Neural Architecture Graphic Processing Unit Implementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antón-Rodríguez, M., Díaz-Pernas, F.J., Díez-Higuera, J.F., Martínez-Zarzuela, M., González-Ortega, D., Boto-Giralda, D.: Recognition of coloured and textured images through a multi-scale neural architecture with orientational filtering and chromatic diffusion. Neurocomputing 72, 3713–3725 (2009)CrossRefGoogle Scholar
  2. 2.
    BSDS: The berkeley segmentation dataset and benchmark, (last visit July 2010)
  3. 3.
    Carey, J.: Brain Facts: A primer on the brain and nervous system. The Society For Neuroscience (2006)Google Scholar
  4. 4.
    Díaz-Pernas, F.J., Antón-Rodríguez, M., Díez-Higuera, J.F., Martínez-Zarzuela, M., González-Ortega, D., Boto-Giralda, D.: Texture classification of the entire brodatz database through an orientational-invariant neural architecture. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5602, pp. 294–303. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Díaz-Pernas, F., Antón-Rodríguez, M., Martínez-Zarzuela, M., Díez-Higuera, J.F., González-Ortega, D., Boto-Giralda, D.: Multiple scale neural architecture for enhancing regions in the colour image segmentation process. Expert Systems 28, 70–96 (in press)Google Scholar
  6. 6.
    Gobron, S., Devillard, F., Heit, B.: Retina simulation using cellular automata and gpu programming. Mach. Vision Appl. 18(6), 331–342 (2007)CrossRefGoogle Scholar
  7. 7.
    Hérault, J., Durette, B.: Modeling visual perception for image processing. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 662–675. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Hodgkin, A.: The Conduction of the Nerve Impulse. Springfield (1964)Google Scholar
  9. 9.
    Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. J. Physiology 195(1), 215–243 (1968)CrossRefGoogle Scholar
  10. 10.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision, vol. 2, pp. 416–423 (July 2001)Google Scholar
  11. 11.
    Martínez-Zarzuela, M., Díaz-Pernas, F., Antón-Rodríguez, M., Díez-Higuera, J., González-Ortega, D., Boto-Giralda, D., López-González, F., De La Torre, I.: Multi-scale neural texture classification using the gpu as a stream processing engine. Mach. Vision Appl. (January 2010),
  12. 12.
    Martínez-Zarzuela, M., Pernas, F.D., Higuera, J.F.D., Antón-Rodríguez, M.: Fuzzy ART neural network parallel computing on the GPU. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 463–470. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Martínez-Zarzuela, M., Pernas, F.D., de Pablos, A.T., Antón-Rodríguez, M., Higuera, J.F.D., Boto-Giralda, D., Ortega, D.G.: Adaptative resonance theory fuzzy networks parallel computation using CUDA. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 149–156. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Mingolla, E., Ross, W., Grossberg, S.: A neural network for enhancing boundaries and surfaces in synthetic aperture radar images. Neural Networks 12, 499–511 (1999)CrossRefGoogle Scholar
  15. 15.
    Obermayer, K., Blasdel, G.G.: Geometry of orientation and ocular dominance columns in monkey striate cortex. Journal of Neuroscience 13, 4114–4129 (1993)Google Scholar
  16. 16.
    Owens, J., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell, T.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum. 26(1), 80–113 (2007), CrossRefGoogle Scholar
  17. 17.
    Rumpf, M., Strzodka, R.: Level set segmentation in graphics hardware. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2001), vol. 3, pp. 1103–1106 (2001)Google Scholar
  18. 18.
    Schwartz, S.: Visual Perception: a clinical orientation, 3rd edn. McGraw-Hill, New York (2004)Google Scholar
  19. 19.
    Viola, I., Kanitsar, A., Gruller, M.E.: Hardware-based nonlinear filtering and segmentation using high-level shading languages. IEEE Visualization, 309–316 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Martínez-Zarzuela
    • 1
  • F. J. Díaz-Pernas
    • 1
  • M. Antón-Rodríguez
    • 1
  • F. Perozo-Rondón
    • 1
  • D. González-Ortega
    • 1
  1. 1.Higher School of Telecommunications EngineeringValladolidSpain

Personalised recommendations