Bio-inspired System in Automatic Speaker Recognition

  • Lina Rosique–López
  • Vicente Garcerán–Hernández
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


Automatic speaker recognition determines whether a person is who he/she claims to be without the intervention of another human being, from their voiceprint. In recent years different methods of voice analysis to fulfill this objective have been developed. At the moment, the development of computational auditory models that emulate the physiology and function of the inner ear have added a new tool in the field of speaker recognition, including the Triple Resonance Nonlinear filter. This paper studies the behavior of a bio-inspired model of inner ear applied to the speakers’s voice analysis. Their ability on speaker recognition tasks was statistically analyzed. We conclude, given the results obtained, that this system is an excellent tool, which shows a high rate of sensitivity and specificity in speaker recognition.


Hair Cell Basilar Membrane Speaker Recognition Triple Resonance Voice Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gil Loyzaga, P.: Estructura y función de la corteza auditiva. Bases de la vía ascendente auditiva. In: Perello, E., Salesa, E. (eds.) Tratado de audiología. Barcelona: Masson: Capítulo 2 (2005)Google Scholar
  2. 2.
    Esteve, C.: Reconocimiento de locutor dependiente de texto mediante adaptación de modelos ocultos de Markov fonéticos (Final work). Universidad autónoma de Madrid (2007)Google Scholar
  3. 3.
    Martínez Rams, E.A., Cano Ortiz, S.D., Garcerán-Hernández, V.: Implantes cocleares: Desarrollo y perspectivas. Revista mexicana de ingeniería biomédica 27(1), 45–54 (2006)Google Scholar
  4. 4.
    López Poveda, E.A., Barrios, L.F., Alves Pinto, A.: Psychophisical stimates of level- dependent best- frequency shifts in the apical region of the human basilar membrane. Acoustic. Soc. Am. J. 121(6), 2654–3646 (2007)CrossRefGoogle Scholar
  5. 5.
    Fletcher, H.: On the dinamics of the cochlea. Acoustic Soc. Am. J. 23(6), 637–646 (1951)CrossRefGoogle Scholar
  6. 6.
    Goblick Jr., T.J., Pfeiffer, Y.: Time-domain measurements of cochlear nonlinearities using combination click stimuli. J. Acoust. Soc. Am. 46, 924–938 (1969)CrossRefGoogle Scholar
  7. 7.
    Goldstein, J.L.: Modeling rapid waveform compression on the basilar membrane as multiple- bandpass-nonlinearity filtering. Hear. Res. 49, 39–60 (1990)CrossRefGoogle Scholar
  8. 8.
    Pfeiffer, R.R.: A model for two-tone inhibition of single cochlearnerve Fibers. Acoust. Soc. Am. J. 48(suppl.) (1970)Google Scholar
  9. 9.
    Dos Santos Perdigao, F.M.: Modelos do sistema auditivo periférico no reconocimiento automático de fala (Thesisl). University of Coimbra (1997)Google Scholar
  10. 10.
    Goldstein, J.L.: Relations among compression, suppression, and combination tones in mechanical responses of the basilar membrane: data and MBPNL mode. Hear. Res. 89, 52–68 (1995)CrossRefGoogle Scholar
  11. 11.
    Meddis, R., O’Mard, L.P., Lopez-Poveda, E.A.: A computational algorithm for computing nonlinear auditory frequency selectivity. J. Acoust. Soc. Am. 109, 2852–2861 (2001)CrossRefGoogle Scholar
  12. 12.
    Christiansen, T.U.: The Meddis Inner Hair-Cell Model. In: Vestergaard, M.D. (ed.), Collection Volume, Papers from the first seminar on Auditory Models, DTU, Acoustic Technology. Technical University of Denmark, pp. 113–128 (2001); ISSN-1395-5985Google Scholar
  13. 13.
    Ortega-Garcia, J., González-Rodriguez, J., Marrero-Aguiar, V., et al.: Ahumada: A large speech corpus in Spanish for speaker identification and verification. Speech Communication 31(2-3), 255–264 (2004)CrossRefGoogle Scholar
  14. 14.
    Boersma, P., Weenink, D.: Praat. Program for speech analysis and synthesis. The University of Amsterdam, Department of PhoneticsGoogle Scholar
  15. 15.
    Martínez–Rams, E.; Garcerán–Hernández, V.: A Speaker Recognition System based on an Auditory Model and Neural Nets: performance at different levels of Sound Pressure and of Gaussian White Noise. In: 4th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC11,(In press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lina Rosique–López
    • 1
  • Vicente Garcerán–Hernández
    • 2
  1. 1.Hospital Rafael MendezLorcaEspaña
  2. 2.Universidad Politécnica de CartagenaCartagenaEspaña

Personalised recommendations