A Hyperheuristic Approach for Dynamic Enumeration Strategy Selection in Constraint Satisfaction

  • Broderick Crawford
  • Ricardo Soto
  • Carlos Castro
  • Eric Monfroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


In this work we show a framework for guiding the classical constraint programming resolution process. Such a framework allows one to measure the resolution process state in order to perform an “on the fly”replacement of strategies exhibiting poor performances. The replacement is performed depending on a quality rank, which is computed by means of a choice function. The choice function determines the performance of a given strategy in a given amount of time through a set of indicators and control parameters. The goal is to select promising strategies to achieve efficient resolution processes. The main novelty of our approach is that we reconfigure the search based solely on performance data gathered while solving the current problem. We report encouraging results where our combination of strategies outperforms the use of individual strategies.


Constraint Programming Reactive Search Heuristic Search 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barták, R., Rudová, H.: Limited assignments: A new cutoff strategy for incomplete depth-first search. In: Proceedings of the 20th ACM Symposium on Applied Computing (SAC), pp. 388–392 (2005)Google Scholar
  2. 2.
    Beck, J.C., Prosser, P., Wallace, R.J.: Trying again to fail-first. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 41–55. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence (ECAI), pp. 146–150. IOS Press, Amsterdam (2004)Google Scholar
  4. 4.
    Chenouard, R., Granvilliers, L., Sebastian, P.: Search heuristics for constraint-aided embodiment design. AI EDAM 23(2), 175–195 (2009)Google Scholar
  5. 5.
    Epstein, S.L., Freuder, E.C., Wallace, R.J., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–542. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Monfroy, E., Castro, C., Crawford, B.: Adaptive enumeration strategies and metabacktracks for constraint solving. In: Yakhno, T., Neuhold, E.J. (eds.) ADVIS 2006. LNCS, vol. 4243, pp. 354–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Sadeh, N.M., Fox, M.S.: Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem. Artif. Intell. 86(1), 1–41 (1996)CrossRefGoogle Scholar
  8. 8.
    Sturdy, P.: Learning good variable orderings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, p. 997. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Wallace, R.J., Grimes, D.: Experimental studies of variable selection strategies based on constraint weights. J. Algorithms 63(1-3), 114–129 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Broderick Crawford
    • 1
    • 2
  • Ricardo Soto
    • 1
  • Carlos Castro
    • 2
  • Eric Monfroy
    • 2
    • 3
  1. 1.Pontificia Universidad Católica de ValparaísoChile
  2. 2.Universidad Técnica Federico Santa MaríaValparaísoChile
  3. 3.LINAUniversité de NantesFrance

Personalised recommendations