Advertisement

Experiments on Lattice Independent Component Analysis for Face Recognition

  • Ion Marqués
  • Manuel Graña
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)

Abstract

In previous works we have proposed Lattice Independent Component Analysis (LICA) for a variety of image processing tasks. The first step of LICA is to identify strong lattice independent components from the data. The set of strong lattice independent vector are used for linear unmixing of the data, obtaining a vector of abundance coefficients. In this paper we propose to use the resulting abundance values as features for clasification, specifically for face recognition. We report results on two well known benchmark databases.

Keywords

Principal Component Analysis Face Recognition Linear Discriminant Analysis Hyperspectral Image Locality Preserve Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellhumer, P.N., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Analysis and Machine Intelligence 17(7), 711–720 (1997)CrossRefGoogle Scholar
  2. 2.
    Cai, D., He, X., Han, J.: Semi-supervised discriminant analysis. In: IEEE 11th International Conference on Computer Vision, vol. 14, pp. 1–7 (2007)Google Scholar
  3. 3.
    Chellappa, R., Sinha, P., Jonathon Phillips, P.: Face recognition by computers and humans. IEEE Computer 43(2), 46–55 (2010)CrossRefGoogle Scholar
  4. 4.
    Graña, M., Chyzhyk, D., García-Sebastián, M., Hernández, C.: Lattice independent component analysis for functional magnetic resonance imaging. Information Sciences (2010) (in Press) Corrected ProofGoogle Scholar
  5. 5.
    Graña, M., Manhaes-Savio, A., García-Sebastián, M., Fernandez, E.: A lattice computing approach for on-line fmri analysis. Image and Vision Computing 28(7), 1155–1161 (2010)CrossRefGoogle Scholar
  6. 6.
    Graña, M., Villaverde, I., Maldonado, J.O., Hernandez, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)CrossRefGoogle Scholar
  7. 7.
    He, X., Niyogi, P.: Locality preserving projections. In: Proceedings of the Conference on Advances in Nerual Information Processing Systems (2003)Google Scholar
  8. 8.
    Heusch, G.: Sebastien Marcel. A novel statistical generative model dedicated to face recognition. Image and Vision Computing 28(1), 101–110 (2010)CrossRefGoogle Scholar
  9. 9.
    Kare, S., Samal, A., Marx, D.: Using bidimensional regression to assess face similarity. Machine Vision and Applications 21(3), 261–274 (2008)CrossRefGoogle Scholar
  10. 10.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using kernel linear discriminant algorithms. IEEE Trans. on Neural Networks 14(1), 117–126 (2003)CrossRefGoogle Scholar
  11. 11.
    Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N., Li, S.Z.: Ensemble-based discriminant learning with boosting for face recognition. IEEE Transactions on Neural Networks 17(1), 166–178 (2006)CrossRefGoogle Scholar
  12. 12.
    Nefian, A.V.: Embedded bayesian networks for face recognition. In: Proc. of the IEEE International Conference on Multimedia and Expo., Lusanne, Switzerland, vol. 2, pp. 133–136 (August 2002)Google Scholar
  13. 13.
    Qiao, L., Chen, S., Tan, X.: Sparsity preserving discriminant analysis for single training image face recognition. Pattern Recognition Letters 31(5), 422–429 (2010)CrossRefGoogle Scholar
  14. 14.
    Ren, C.-X., Dai, D.-Q.: Incremental learning of bidirectional principal components for face recognition. Pattern Recognition 43(1), 318–330 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ritter, G.X., Urcid, G.: A lattice matrix method for hyperspectral image unmixing. Information Sciences (2010) (in Press) Corrected ProofGoogle Scholar
  16. 16.
    Ritter, G.X., Sussner, P., Diaz de Leon, J.L.: Morphological associative memories. IEEE Transactions on Neural Networks 9(2), 281–293 (1998)CrossRefGoogle Scholar
  17. 17.
    Ritter, G.X., Urcid, G., Schmalz, M.S.: Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10-12), 2101–2110 (2009)CrossRefGoogle Scholar
  18. 18.
    Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142 (December 1994)Google Scholar
  19. 19.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  20. 20.
    Yambor, W.S.: Analysis of PCA-based and Fisher Discriminant-Based Image Recognition Algorithms. Technical report cs-00-103, Computer Science Department, Colorado State University (July 2000)Google Scholar
  21. 21.
    Zhou, D., Tang, Z.: Kernel-based improved discriminant analysis and its application to face recognition. Soft Computing - A Fusion of Foundations, Methodologies and Applications 14(2), 103–111 (2009)Google Scholar
  22. 22.
    Zhou, S., Chellappa, R.: Multiple-exemplar discriminant analysis for face recognition. In: Proc. of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, pp. 191–194 (August 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ion Marqués
    • 1
  • Manuel Graña
    • 1
  1. 1.Computational Intelligence Group, Dept. CCIAUPV/EHUSan SebastianSpain

Personalised recommendations