Skip to main content

Pattern Recognition Using a Recurrent Neural Network Inspired on the Olfactory Bulb

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6687))

  • 1574 Accesses

Abstract

The olfactory system is a remarkable system capable of discriminating very similar odorant mixtures. This is in part achieved via spatio-temporal activity patterns generated in mitral cells, the principal cells of the olfactory bulb, during odor presentation. In this work, we present a spiking neural network model of the olfactory bulb and evaluate its performance as a pattern recognition system with datasets taken from both artificial and real pattern databases. Our results show that the dynamic activity patterns produced in the mitral cells of the olfactory bulb model by pattern attributes presented to it have a pattern separation capability. This capability can be explored in the construction of high-performance pattern recognition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L.F.: Theoretical neuroscience rising. Neuron 60, 489–495 (2008)

    Article  Google Scholar 

  2. Adrian, E.D.: The electrical activity of the olfactory bulb. Electroencephalography and Clinical Neurophysiology 2, 377–388 (1950)

    Article  Google Scholar 

  3. Auer, P., Burgsteiner, H., Maass, W.: Reducing communication for distributed learning in neural networks. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, p. 123. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Auer, P., Burgsteiner, H., Maass, W.: A learning rule for very simple universal approximators consisting of a single layer of perceptrons. Neural Networks 21(5), 786–795 (2008)

    Article  MATH  Google Scholar 

  5. Blake, C.L., Merz, C.J.: Uci repository of machine learning databases (1998)

    Google Scholar 

  6. Cleland, T.A., Linster, C.: Computation in the olfactory system. Chemical Senses 30, 801–813 (2005)

    Article  Google Scholar 

  7. Davison, A.P., Feng, J., Brown, D.: Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. Journal of Neurophysiology 90, 1921–1935 (2003)

    Article  Google Scholar 

  8. Freeman, W.J., Skarda, C.A.: Spatial EEG patterns, non-linear dynamics and perception: the neo-Sherringtonian view. Brain Research 357, 147–175 (1985)

    Article  Google Scholar 

  9. Heyward, P., Ennis, M., Keller, A., Shipley, M.T.: Membrane bistability in olfactory bulb mitral cells. The Journal of Neuroscience 21(14), 5311–5320 (2001)

    Google Scholar 

  10. Harris, K.D., Bartho, P., Chadderton, P., Curto, C., de la Rocha, J., Hollender, L., Itskov, V., Luczak, A., Marguet, S.L., Renart, A., Sakata, S.: How do neurons work together? Lessons from auditory cortex. Hearing Research 271, 37–53 (2011)

    Article  Google Scholar 

  11. Izhikevich, E.M.: Dynamical Systems in Neuroscience: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press, Cambridge (2007)

    Google Scholar 

  12. Jaeger, H.: Short term memory in echo state networks. GMD-Report 152, GMD - German National Research Institute for Computer Science (2002)

    Google Scholar 

  13. Jin, J., Wang, Y., Swadlow, H.A., Alonso, J.M.: Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nature Neuroscience 14, 232–240 (2011)

    Article  Google Scholar 

  14. Kay, L.M., Stopfer, M.: Information processing in the olfactory systems of insects and vertebrates. Seminars in Cell & Developmental Biology 17, 433–442 (2006)

    Article  Google Scholar 

  15. Kay, L.M., Beshel, J., Brea, J., Martin, C., Rojas-Líbano, D., Kopell, N.: Olfactory oscillations: the what, how and what for. Trends in Neuroscience 32, 207–214 (2008)

    Article  Google Scholar 

  16. Laurent, G.: Olfactory processing: maps, time and codes. Current Opinion in Neurobiology 7, 547–553 (1997)

    Article  Google Scholar 

  17. Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nature Reviews Neuroscience 3, 884–895 (2002)

    Article  Google Scholar 

  18. Laurent, G., Stopfer, M., Friedrich, R.W., Rabinovich, M.I., Volkovskii, A., Abarbanel, H.D.I.: Odor encoding as an active, dynamical process: Experiments, computation, and theory. Annual Review of Neuroscience 24, 263–297 (2001)

    Article  Google Scholar 

  19. Lledo, P.M., Gheusi, G., Vincent, J.D.: Information processing in the mammalian olfactory system. Physiological Reviews 85, 281–317 (2005)

    Article  Google Scholar 

  20. Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences (USA) 95, 5323–5328 (1998)

    Article  Google Scholar 

  21. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)

    Article  MATH  Google Scholar 

  22. Mori, K., Nagao, H., Yoshihara, Y.: The olfactory bulb: coding and processing of odor molecule information. Science 286(5440), 711–715 (1999)

    Article  Google Scholar 

  23. Natschläger, T., Maass, W., Markram, H.: The “liquid computer”: A novel strategy for real-time computing on time series. Special Issue on Foundations of Information Processing of TELEMATIK, 8 (2002)

    Google Scholar 

  24. Shepherd, G.M.: The synaptic organization of the brain, 5th edn. Oxford University Press, Oxford (2004)

    Book  Google Scholar 

  25. Shepherd, G.M., Chen, W.R., Willhite, D., Migliore, M., Greer, C.A.: The olfactory granule cell: from classical enigma to central role in olfactory processing. Brain Res. Rev. 55(2), 373–382 (2007)

    Article  Google Scholar 

  26. Simões-de-Souza, F.M., Roque, A.C.: A biophysical model of vertebrate olfactory epithelium and bulb exhibiting gap junction dependent odor-evoked spatiotemporal patterns of activity. BioSystems 73, 25–43 (2004)

    Article  Google Scholar 

  27. Stopfer, M., Jayaraman, V., Laurent, G.: Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003)

    Article  Google Scholar 

  28. Tsodyks, M., Pawelzik, K., Markram, H.: Neural networks with dynamic synapses. Neural Computation 10(4), 821–835 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Figueira, L.B., Roque, A.C. (2011). Pattern Recognition Using a Recurrent Neural Network Inspired on the Olfactory Bulb. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics