Skip to main content

Scaling Effects in Crossmodal Improvement of Visual Perception

  • Conference paper
New Challenges on Bioinspired Applications (IWINAC 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6687))

Abstract

Inspired in the work of J. Gonzalo [Dinámica Cerebral. Publ. Red Comput. Natural y Artificial, Univ. Santiago de Compostela, Spain 2010] on multisensory effects and crossmodal facilitation of perception in patients with cerebral cortical lesions, we have observed and modelled weaker but similar effects in normal subjects: Moderate and static muscular effort improves visual vernier acuity in ten tested normal subjects, and a scaling power law describes the improvement with the intensity of the effort. This suggests that the mechanism of activation of unspecific (or multispecific) neural mass in the facilitation phenomena in damaged brain is also involved in the normal brain, and that the power law reflects a basic biological scaling with the activated neural mass, inherent to natural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Urbantschitsch, V.: Über den Einfluss einer Sinneserregung auf die übrigen Sinnesempfindungen. Pflügers Archiv European J. Physiol. 42, 154–182 (1888)

    Article  Google Scholar 

  2. Kravkov, S.V.: Ueber die Abhängigkeit der Sehschärfe vom Schallreiz. Arch. Ophthal. 124, 334–338 (1930)

    Google Scholar 

  3. Hartmann, G.W.: Changes in Visual Acuity through Simultaneous Stimulation of Other Sense Organs. J. Exp. Psychol. 16, 393–407 (1933)

    Article  Google Scholar 

  4. Hartmann, G.W.: Gestalt Psychology. The Ronald Press, New York (1935)

    Google Scholar 

  5. London, I.D.: Research of sensory interaction in the Soviet Union. Psychol. Bull. 51, 531–568 (1954)

    Article  Google Scholar 

  6. Gonzalo, J.: Dinámica cerebral. La actividad cerebral en función de las condiciones dinámicas de la excitabilidad nerviosa. Publ. Consejo Superior de Investigaciones Científicas, Inst. S. Ramón y Cajal, vol I (1945) vol II (1950) Madrid. Publ. Red Comput. Natural y Artificial, Univ. Santiago de Compostela, Spain, vols I, II (2010)

    Google Scholar 

  7. Gonzalo, J.: La cerebración sensorial y el desarrollo en espiral. Cruzamientos, magnificación, morfogénesis. Trab. Inst. Cajal Invest. Biol. 43, 209–260 (1951)

    Google Scholar 

  8. Gonzalo, J.: Las funciones cerebrales humanas según nuevos datos y bases fisiológicas: Una introducción a los estudios de Dinámica Cerebral. Trab. Inst. Cajal Invest. Biol. 44, 95–157 (1952)

    Google Scholar 

  9. Shams, L., Kim, R.: Crossmodal influences on visual perception. Phys. Life. Rev. 7, 269–284 (2010)

    Article  Google Scholar 

  10. Goldstein, K., Gelb, A.: Psychologische Analysen hirnpathologischer Fälle auf Grund Untersuchungen Hirnverletzer. Z. Gesamte Neurol. Psychiatr. 41, 1–142 (1918)

    Article  Google Scholar 

  11. Penta, P.: Due casi di visione capovolta. Il Cervello 25, 377–389 (1949)

    Google Scholar 

  12. Klopp, H.: Über Umgekehrt und Verkehrtsehen. Dtsch. Z. Nervenheilkd. 165, 231–260 (1951)

    Article  Google Scholar 

  13. River, Y., Ben Hur, T., Steiner, I.: Reversal of vision metamorphopsia. Arch. Neurol. 53, 1362–1368 (1998)

    Article  Google Scholar 

  14. Cohen, L., Belee, L., Lacoste, P., Signoret, J.L.: Illusion of visual tilt: a case. Rev. Neurol. 147, 389–391 (1991)

    Google Scholar 

  15. Arjona, A., Fernández-Romero, E.: Ilusión de inclinación de la imagen visual. Descripción de dos casos y revisión de la terminología. Neurología 17, 338–341 (2002)

    Google Scholar 

  16. Ballus, C.: La maniobra de refuerzo de J. Gonzalo y su objetivación por el test oscilométrico. Anuar. Psicología (Dep. Psicol. Univ. Barcelona) 2, 21–28 (1970)

    Google Scholar 

  17. Proffitt, D.R., Stefanucci, J., Banton, T., Epstein, W.: The role of effort in perceiving distance. Psychol. Sci. 14, 106–112 (2003)

    Article  Google Scholar 

  18. Lourenco, S.F., Longo, M.R.: The plasticity of near space: Evidence for contraction. Cognition 112, 451–456 (2009)

    Article  Google Scholar 

  19. Gonzalo, I., Gonzalo, A.: Functional gradients in cerebral dynamics: The J. Gonzalo theories of the sensorial cortex. In: Moreno-Díaz, R., Mira, J. (eds.) Brain Processes, Theories and Models. An Int. Conf. in honor of W.S. McCulloch 25 years after his death, pp. 78–87. MIT Press, Massachusetts (1996)

    Google Scholar 

  20. Gonzalo-Fonrodona, I.: Functional gradients through the cortex, multisensory integration and scaling laws in brain dynamics. Neurocomp. 72, 831–838 (2009)

    Article  Google Scholar 

  21. Delgado, A.E.: Modelos Neurocibernéticos de Dinámica Cerebral. Ph.D.Thesis. E.T.S. de Ingenieros de Telecomunicación. Univ. Politécnica, Madrid (1978)

    Google Scholar 

  22. Mira, J., Delgado, A.E., Moreno-Díaz, R.: The fuzzy paradigm for knowledge representation in cerebral dynamics. Fuzzy Sets and Systems 23, 315–330 (1987)

    Article  Google Scholar 

  23. Mira, J., Manjarrés, A., Ros, S., Delgado, A.E., Álvarez, J.R.: Cooperative Organization of Connectivity Patterns and Receptive Fields in the Visual Pathway: Application to Adaptive Thresholdig. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 15–23. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  24. Tal, N., Amedi, A.: Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp. Brain Res. 198, 165–182 (2009)

    Article  Google Scholar 

  25. Hertz, U., Amedi, A.: Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis. NeuroImage 52, 617–632 (2010)

    Article  Google Scholar 

  26. Pascual-Leone, A., Hamilton, R.: The metamodal organization of the brain. In: Casanova, C., Ptito, M. (eds.) Progress in Brain Research, vol. 134, pp. 1–19. Elsevier, Amsterdam (2001)

    Google Scholar 

  27. Wallace, M.T., Ramachandran, R., Stein, B.E.: A revise view of sensory cortical parcellation. Proc. Natl. Acad. Sci. USA 101, 2167–2172 (2004)

    Article  Google Scholar 

  28. Amedi, A., Kriegstein, K., von Atteveldt, N.M., van Beauchamp, M.S., Naumer, M.J.: Functional imaging of human crossmodal identification and object recognition. Exp. Brain. Res. 166, 559–571 (2005)

    Article  Google Scholar 

  29. Foxe, J.J., Schroeder, C.E.: The case for feedforward multisensory convergence during early cortical processing. Neuroreport. 16, 419–423 (2005)

    Article  Google Scholar 

  30. Pascual-Leone, A., Amedi, A., Fregni, F., Merabet, L.: The plastic human brain cortex. Ann. Rev. Neurosci. 28, 377–401 (2005)

    Article  Google Scholar 

  31. Ghazanfar, A.A., Schroeder, C.E.: Is neocortex essentially multisensory? Trends. Cogn. Sci. 10, 278–285 (2006)

    Google Scholar 

  32. Martuzzi, R., Murray, M.M., Michel, C.M., Thiran, J.P., Maeder, P.P., Clarke, S., Meuli, R.A.: Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb. Cortex 17, 1672–1679 (2007)

    Article  Google Scholar 

  33. Stein, B.E., Stanford, T.R., Ramachandran, R., Perrault Jr, T.J., Rowland, B.A.: Challenges in quantifying multisensory integration: alternative criteria, models, and inverse effectiveness. Exp. Brain Res. 198, 113–126 (2009)

    Article  Google Scholar 

  34. Gonzalo-Fonrodona, I., Porras, M.A.: Physiological Laws of Sensory Visual System in Relation to Scaling Power Laws in Biological Neural Networks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 96–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  35. Gonzalo-Fonrodona, I., Porras, M.A.: Scaling power laws in the restoration of perception with increasing stimulus in deficitary natural neural network. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5601, pp. 174–183. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  36. Arthurs, O.J., Stephenson, C.M.E., Rice, K., Lupson, V.C., Spiegelhalter, D.J., Boniface, S.J., Bullmore, E.T.: Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. NeuroImage 21, 540–546 (2004)

    Article  Google Scholar 

  37. Anderson, R.B.: The power law as an emergent property. Mem. Cogn. 29, 1061–1068 (2001)

    Article  Google Scholar 

  38. West, G.B., Brown, J.H.: A general model for the origin of allometric scalling laws in biology. Science 276, 122–126 (1997)

    Article  Google Scholar 

  39. West, G.B., Brown, J.H.: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005)

    Article  Google Scholar 

  40. Westheimer, G.: Do ocular-dominance columns set spatial limits for hyperacuity processing? Vision Res. 22, 1349–1352 (1982)

    Article  Google Scholar 

  41. Bach, M.: The Freiburg Visual Acuity Test – Automatic measurement of visual acuity. Optometry and Vis. Sci. 73, 49–53 (1996)

    Article  Google Scholar 

  42. Bach, M.: The Freiburg Visual Acuity Test – Variability unchanged by post-hoc re-analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 965–971 (2007)

    Article  Google Scholar 

  43. Laurienti, P.J., Burdette, J.H., Maldjian, J.A., Wallace, M.T.: Enhanced multisensory integration in older adults. Neurobiol. Aging 27, 1155–1163 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonzalo-Fonrodona, I., Porras, M.A. (2011). Scaling Effects in Crossmodal Improvement of Visual Perception. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds) New Challenges on Bioinspired Applications. IWINAC 2011. Lecture Notes in Computer Science, vol 6687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21326-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21326-7_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21325-0

  • Online ISBN: 978-3-642-21326-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics