Scaling Effects in Crossmodal Improvement of Visual Perception

  • Isabel Gonzalo-Fonrodona
  • Miguel A. Porras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


Inspired in the work of J. Gonzalo [Dinámica Cerebral. Publ. Red Comput. Natural y Artificial, Univ. Santiago de Compostela, Spain 2010] on multisensory effects and crossmodal facilitation of perception in patients with cerebral cortical lesions, we have observed and modelled weaker but similar effects in normal subjects: Moderate and static muscular effort improves visual vernier acuity in ten tested normal subjects, and a scaling power law describes the improvement with the intensity of the effort. This suggests that the mechanism of activation of unspecific (or multispecific) neural mass in the facilitation phenomena in damaged brain is also involved in the normal brain, and that the power law reflects a basic biological scaling with the activated neural mass, inherent to natural networks.


Visual Perception Multisensory Integration Power Exponent Multisensory Interaction Audiovisual Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Urbantschitsch, V.: Über den Einfluss einer Sinneserregung auf die übrigen Sinnesempfindungen. Pflügers Archiv European J. Physiol. 42, 154–182 (1888)CrossRefGoogle Scholar
  2. 2.
    Kravkov, S.V.: Ueber die Abhängigkeit der Sehschärfe vom Schallreiz. Arch. Ophthal. 124, 334–338 (1930)Google Scholar
  3. 3.
    Hartmann, G.W.: Changes in Visual Acuity through Simultaneous Stimulation of Other Sense Organs. J. Exp. Psychol. 16, 393–407 (1933)CrossRefGoogle Scholar
  4. 4.
    Hartmann, G.W.: Gestalt Psychology. The Ronald Press, New York (1935)Google Scholar
  5. 5.
    London, I.D.: Research of sensory interaction in the Soviet Union. Psychol. Bull. 51, 531–568 (1954)CrossRefGoogle Scholar
  6. 6.
    Gonzalo, J.: Dinámica cerebral. La actividad cerebral en función de las condiciones dinámicas de la excitabilidad nerviosa. Publ. Consejo Superior de Investigaciones Científicas, Inst. S. Ramón y Cajal, vol I (1945) vol II (1950) Madrid. Publ. Red Comput. Natural y Artificial, Univ. Santiago de Compostela, Spain, vols I, II (2010)Google Scholar
  7. 7.
    Gonzalo, J.: La cerebración sensorial y el desarrollo en espiral. Cruzamientos, magnificación, morfogénesis. Trab. Inst. Cajal Invest. Biol. 43, 209–260 (1951)Google Scholar
  8. 8.
    Gonzalo, J.: Las funciones cerebrales humanas según nuevos datos y bases fisiológicas: Una introducción a los estudios de Dinámica Cerebral. Trab. Inst. Cajal Invest. Biol. 44, 95–157 (1952)Google Scholar
  9. 9.
    Shams, L., Kim, R.: Crossmodal influences on visual perception. Phys. Life. Rev. 7, 269–284 (2010)CrossRefGoogle Scholar
  10. 10.
    Goldstein, K., Gelb, A.: Psychologische Analysen hirnpathologischer Fälle auf Grund Untersuchungen Hirnverletzer. Z. Gesamte Neurol. Psychiatr. 41, 1–142 (1918)CrossRefGoogle Scholar
  11. 11.
    Penta, P.: Due casi di visione capovolta. Il Cervello 25, 377–389 (1949)Google Scholar
  12. 12.
    Klopp, H.: Über Umgekehrt und Verkehrtsehen. Dtsch. Z. Nervenheilkd. 165, 231–260 (1951)CrossRefGoogle Scholar
  13. 13.
    River, Y., Ben Hur, T., Steiner, I.: Reversal of vision metamorphopsia. Arch. Neurol. 53, 1362–1368 (1998)CrossRefGoogle Scholar
  14. 14.
    Cohen, L., Belee, L., Lacoste, P., Signoret, J.L.: Illusion of visual tilt: a case. Rev. Neurol. 147, 389–391 (1991)Google Scholar
  15. 15.
    Arjona, A., Fernández-Romero, E.: Ilusión de inclinación de la imagen visual. Descripción de dos casos y revisión de la terminología. Neurología 17, 338–341 (2002)Google Scholar
  16. 16.
    Ballus, C.: La maniobra de refuerzo de J. Gonzalo y su objetivación por el test oscilométrico. Anuar. Psicología (Dep. Psicol. Univ. Barcelona) 2, 21–28 (1970)Google Scholar
  17. 17.
    Proffitt, D.R., Stefanucci, J., Banton, T., Epstein, W.: The role of effort in perceiving distance. Psychol. Sci. 14, 106–112 (2003)CrossRefGoogle Scholar
  18. 18.
    Lourenco, S.F., Longo, M.R.: The plasticity of near space: Evidence for contraction. Cognition 112, 451–456 (2009)CrossRefGoogle Scholar
  19. 19.
    Gonzalo, I., Gonzalo, A.: Functional gradients in cerebral dynamics: The J. Gonzalo theories of the sensorial cortex. In: Moreno-Díaz, R., Mira, J. (eds.) Brain Processes, Theories and Models. An Int. Conf. in honor of W.S. McCulloch 25 years after his death, pp. 78–87. MIT Press, Massachusetts (1996)Google Scholar
  20. 20.
    Gonzalo-Fonrodona, I.: Functional gradients through the cortex, multisensory integration and scaling laws in brain dynamics. Neurocomp. 72, 831–838 (2009)CrossRefGoogle Scholar
  21. 21.
    Delgado, A.E.: Modelos Neurocibernéticos de Dinámica Cerebral. Ph.D.Thesis. E.T.S. de Ingenieros de Telecomunicación. Univ. Politécnica, Madrid (1978)Google Scholar
  22. 22.
    Mira, J., Delgado, A.E., Moreno-Díaz, R.: The fuzzy paradigm for knowledge representation in cerebral dynamics. Fuzzy Sets and Systems 23, 315–330 (1987)CrossRefGoogle Scholar
  23. 23.
    Mira, J., Manjarrés, A., Ros, S., Delgado, A.E., Álvarez, J.R.: Cooperative Organization of Connectivity Patterns and Receptive Fields in the Visual Pathway: Application to Adaptive Thresholdig. In: Sandoval, F., Mira, J. (eds.) IWANN 1995. LNCS, vol. 930, pp. 15–23. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  24. 24.
    Tal, N., Amedi, A.: Multisensory visual-tactile object related network in humans: insights gained using a novel crossmodal adaptation approach. Exp. Brain Res. 198, 165–182 (2009)CrossRefGoogle Scholar
  25. 25.
    Hertz, U., Amedi, A.: Disentangling unisensory and multisensory components in audiovisual integration using a novel multifrequency fMRI spectral analysis. NeuroImage 52, 617–632 (2010)CrossRefGoogle Scholar
  26. 26.
    Pascual-Leone, A., Hamilton, R.: The metamodal organization of the brain. In: Casanova, C., Ptito, M. (eds.) Progress in Brain Research, vol. 134, pp. 1–19. Elsevier, Amsterdam (2001)Google Scholar
  27. 27.
    Wallace, M.T., Ramachandran, R., Stein, B.E.: A revise view of sensory cortical parcellation. Proc. Natl. Acad. Sci. USA 101, 2167–2172 (2004)CrossRefGoogle Scholar
  28. 28.
    Amedi, A., Kriegstein, K., von Atteveldt, N.M., van Beauchamp, M.S., Naumer, M.J.: Functional imaging of human crossmodal identification and object recognition. Exp. Brain. Res. 166, 559–571 (2005)CrossRefGoogle Scholar
  29. 29.
    Foxe, J.J., Schroeder, C.E.: The case for feedforward multisensory convergence during early cortical processing. Neuroreport. 16, 419–423 (2005)CrossRefGoogle Scholar
  30. 30.
    Pascual-Leone, A., Amedi, A., Fregni, F., Merabet, L.: The plastic human brain cortex. Ann. Rev. Neurosci. 28, 377–401 (2005)CrossRefGoogle Scholar
  31. 31.
    Ghazanfar, A.A., Schroeder, C.E.: Is neocortex essentially multisensory? Trends. Cogn. Sci. 10, 278–285 (2006)Google Scholar
  32. 32.
    Martuzzi, R., Murray, M.M., Michel, C.M., Thiran, J.P., Maeder, P.P., Clarke, S., Meuli, R.A.: Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb. Cortex 17, 1672–1679 (2007)CrossRefGoogle Scholar
  33. 33.
    Stein, B.E., Stanford, T.R., Ramachandran, R., Perrault Jr, T.J., Rowland, B.A.: Challenges in quantifying multisensory integration: alternative criteria, models, and inverse effectiveness. Exp. Brain Res. 198, 113–126 (2009)CrossRefGoogle Scholar
  34. 34.
    Gonzalo-Fonrodona, I., Porras, M.A.: Physiological Laws of Sensory Visual System in Relation to Scaling Power Laws in Biological Neural Networks. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 96–102. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  35. 35.
    Gonzalo-Fonrodona, I., Porras, M.A.: Scaling power laws in the restoration of perception with increasing stimulus in deficitary natural neural network. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2009. LNCS, vol. 5601, pp. 174–183. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  36. 36.
    Arthurs, O.J., Stephenson, C.M.E., Rice, K., Lupson, V.C., Spiegelhalter, D.J., Boniface, S.J., Bullmore, E.T.: Dopaminergic effects on electrophysiological and functional MRI measures of human cortical stimulus-response power laws. NeuroImage 21, 540–546 (2004)CrossRefGoogle Scholar
  37. 37.
    Anderson, R.B.: The power law as an emergent property. Mem. Cogn. 29, 1061–1068 (2001)CrossRefGoogle Scholar
  38. 38.
    West, G.B., Brown, J.H.: A general model for the origin of allometric scalling laws in biology. Science 276, 122–126 (1997)CrossRefGoogle Scholar
  39. 39.
    West, G.B., Brown, J.H.: The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 208, 1575–1592 (2005)CrossRefGoogle Scholar
  40. 40.
    Westheimer, G.: Do ocular-dominance columns set spatial limits for hyperacuity processing? Vision Res. 22, 1349–1352 (1982)CrossRefGoogle Scholar
  41. 41.
    Bach, M.: The Freiburg Visual Acuity Test – Automatic measurement of visual acuity. Optometry and Vis. Sci. 73, 49–53 (1996)CrossRefGoogle Scholar
  42. 42.
    Bach, M.: The Freiburg Visual Acuity Test – Variability unchanged by post-hoc re-analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 245, 965–971 (2007)CrossRefGoogle Scholar
  43. 43.
    Laurienti, P.J., Burdette, J.H., Maldjian, J.A., Wallace, M.T.: Enhanced multisensory integration in older adults. Neurobiol. Aging 27, 1155–1163 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Isabel Gonzalo-Fonrodona
    • 1
  • Miguel A. Porras
    • 2
  1. 1.Departamento de Óptica, Facultad de Ciencias FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.Departamento de Física Aplicada, ETSIMUniversidad Politécnica de MadridMadridSpain

Personalised recommendations