A Fuzzy Cognitive Maps Modeling, Learning and Simulation Framework for Studying Complex System

  • Maikel León
  • Gonzalo Nápoles
  • Ciro Rodriguez
  • María M. García
  • Rafael Bello
  • Koen Vanhoof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


This paper presents Fuzzy Cognitive Maps as an approach in modeling the behavior and operation of complex systems; they combine aspects of fuzzy logic, neural networks, semantic networks, expert systems, and nonlinear dynamical systems. They are fuzzy weighted directed graphs with feedback that create models that emulate the behavior of complex decision processes using fuzzy causal relations. First, the description and the methodology that this theory suggests is examined, later some ideas for using this approach in the control process area are discussed. An inspired on particle swarm optimization learning method for this technique is proposed, and then, the implementation of a tool based on Fuzzy Cognitive Maps is described. The application of this theory might contribute to the progress of more intelligent and independent systems. Fuzzy Cognitive Maps have been fruitfully used in decision making and simulation of complex situation and analysis. At the end, a case study about Travel Behavior is analyzed and results are assessed.


Fuzzy Cognitive Maps Particle Swarm Optimization Travel Behavior Complex Systems Decision Making Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kosko, B.: Neural Networks and Fuzzy systems, a dynamic system approach to machine intelligence, p. 244. Prentice-Hall, Englewood Cliffs (1992)zbMATHGoogle Scholar
  2. 2.
    Parpola, P.: Inference in the SOOKAT object-oriented knowledge acquisition tool. Knowledge and Information Systems (2005)Google Scholar
  3. 3.
    Kosko, B.: Fuzzy Cognitive Maps. International Journal of Man-Machine Studies 24, 65–75 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Koulouritios, D.: Efficiently Modeling and Controlling Complex Dynamic Systems using Evolutionary Fuzzy Cognitive Maps. International Journal of Computational Cognition 1, 41–65 (2003)Google Scholar
  5. 5.
    Wei, Z.: Using fuzzy cognitive time maps for modeling and evaluating trust dynamics in the virtual enterprises. Expert Systems with Applications, 1583–1592 (2008)Google Scholar
  6. 6.
    Xirogiannis, G.: Fuzzy Cognitive Maps as a Back End to Knowledge-based Systems in Geographically Dispersed Financial Organizations. Knowledge and Process Management 11, 137–154 (2004)CrossRefGoogle Scholar
  7. 7.
    Aguilar, J.: A Dynamic Fuzzy-Cognitive-Map Approach Based on Random Neural Networks. Journal of Computational Cognition 1, 91–107 (2003)Google Scholar
  8. 8.
    Li, X.: Dynamic Knowledge Inference and Learning under Adaptive Fuzzy Petri Net Framework. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and reviews (2000)Google Scholar
  9. 9.
    Castillo, E.: Expert Systems and Probabilistic Network Models. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    Intan, R.: Fuzzy conditional probability relations and their applications in fuzzy information systems. Knowledge and Information Systems (2004)Google Scholar
  11. 11.
    Carlsson, C.: Adaptive Fuzzy Cognitive Maps for Hyperknowledge Representation in Strategy Formation Process. In: IAMSR, Abo Akademi University (2005)Google Scholar
  12. 12.
    Stylios, C.: Modeling Complex Systems Using Fuzzy Cognitive Maps. IEEE Transactions on Systems, Man and Cybernetics 34, 155–162 (2004)CrossRefGoogle Scholar
  13. 13.
    Mcmichael, J.: Optimizing Fuzzy Cognitive Maps with a Genetic Algorithm AIAA 1\(^{\text{st}}\)Intelligent Systems Technical Conference. Chicago, Illinois (2004)Google Scholar
  14. 14.
    Mohr, S.: Software Design for a Fuzzy Cognitive Map Modeling Tool. Tensselaer Polytechnic Institute (1997)Google Scholar
  15. 15.
    Contreras, J.: Aplicación de Mapas Cognitivos Difusos Dinámicos a tareas de supervisión y control. Trabajo Final de Grado. Universidad de los Andes. Mérida, Venezuela (2005)Google Scholar
  16. 16.
    Tsadiras, A.: A New Balance Degree for Fuzzy Cognitive Maps. Technical Report. Department of Applied Informatics. University of Macedonia (2007)Google Scholar
  17. 17.
    Gutiérrez, J.: Análisis de los efectos de las infraestructuras de transporte sobre la accesibilidad y la cohesión regional. Estudios de Construcción y Transportes. Ministerio de Fomento. España (2006)Google Scholar
  18. 18.
    Wu, Q.: Multiknowledge for decision making. Knowledge and Information Systems (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Maikel León
    • 1
  • Gonzalo Nápoles
    • 1
  • Ciro Rodriguez
    • 2
  • María M. García
    • 1
  • Rafael Bello
    • 1
  • Koen Vanhoof
    • 3
  1. 1.Central University of Las VillasSanta ClaraCuba
  2. 2.Cienfuegos UniversityCienfuegosCuba
  3. 3.Hasselt University, IMOBDiepenbeekBelgium

Personalised recommendations