Alzheimer Disease Classification on Diffusion Weighted Imaging Features

  • M. Termenon
  • A. Besga
  • J. Echeveste
  • A. Gonzalez-Pinto
  • M. Graña
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


An on-going study in Hospital de Santiago Apostol collects anatomical T1-weighted MRI volumes and Diffusion Weighted Imaging (DWI) data of control and Alzheimer’s Disease patients. The aim of this paper is to obtain discriminant features from scalar measures of DWI data, the Fractional Anisotropy (FA) and Mean Diffusivity (MD) volumes, and to train and test classifiers able to discriminate AD patients from controls on the basis of features selected from the FA or MD volumes. In this study, separate classifiers were trained and tested on FA and MD data. Feature selection is done according to the Pearson’s correlation between voxel values across subjects and the control variable giving the subject class (1 for AD patients, 0 for controls). Some of the tested classifiers reach very high accuracy with this simple feature selection process. Those results point to the validity of DWI data as a image-marker for AD.


Support Vector Machine Fractional Anisotropy Alzheimer Disease Relevance Vector Machine Anterior Thalamic Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–267 (1994); PMID: 8130344 PMCID: 1275686CrossRefGoogle Scholar
  2. 2.
    Behrens, T.E.J., Woolrich, M.W., Jenkinson, M., Johansen-Berg, H., Nunes, R.G., Clare, S., Matthews, P.M., Brady, J.M., Smith, S.M.: Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine 50(5), 1077–1088 (2003)CrossRefGoogle Scholar
  3. 3.
    Douaud, G., Jbabdi, S., Behrens, T.E.J., Menke, R.A., Gass, A., Monsch, A.U., Rao, A., Whitcher, B., Kindlmann, G., Matthews, P.M., Smith, S.: DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild alzheimer’s disease. NeuroImage (in Press) Uncorrected Proof Google Scholar
  4. 4.
    Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Transactions on Medical Imaging 26(1), 93–105 (2007); PMID: 17243588CrossRefGoogle Scholar
  5. 5.
    García-Sebastián, M., Savio, A., Graña, M., Villanúa, J.: On the use of morphometry based features for alzheimer’s disease detection on MRI. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 957–964. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Parente, D.B., Gasparetto, E.L., da Cruz, L.C.H., Domingues, R.C., Baptista, A.C., Carvalho, A.C.P., Domingues, R.C.: Potential role of diffusion tensor MRI in the differential diagnosis of mild cognitive impairment and alzheimer’s disease. Am. J. Roentgenol. 190(5), 1369–1374 (2008)CrossRefGoogle Scholar
  7. 7.
    Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201(3), 637–648 (1996)CrossRefGoogle Scholar
  8. 8.
    Serra, L., Cercignani, M., Lenzi, D., Perri, R., Fadda, L., Caltagirone, C., Macaluso, E., Bozzali, M.: Grey and white matter changes at different stages of alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 19(1), 147–159 (2010); PMID: 20061634Google Scholar
  9. 9.
    Stahl, R., Dietrich, O., Teipel, S.J., Hampel, H., Reiser, M.F., Schoenberg, S.O.: White matter damage in alzheimer disease and mild cognitive impairment: Assessment with Diffusion-Tensor MR imaging and parallel imaging techniques1. Radiology 243(2), 483–492 (2007)CrossRefGoogle Scholar
  10. 10.
    Tipping, M.E.: Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1(3), 211–244 (2001)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Tipping, M.E., Faul, A., Thomson Avenue, J.J., Thomson Avenue, J.J.: Fast marginal likelihood maximisation for sparse bayesian models. In: Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, pp. 3–6 (2003)Google Scholar
  12. 12.
    Vapnik, V.N.: Statistical Learning Theory. Wiley Interscience, Hoboken (1998)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Termenon
    • 1
  • A. Besga
    • 2
  • J. Echeveste
    • 3
  • A. Gonzalez-Pinto
    • 2
  • M. Graña
    • 1
  1. 1.Grupo de Inteligencia ComputacionalUPV/EHUSpain
  2. 2.Unidad de Investigación en Psiquiatría del Hospital de Santiago ApostolVitoria-GasteizSpain
  3. 3.Departamento de Resonancia MagnéticaOsatek-VitoriaSpain

Personalised recommendations