High Resolution Segmentation of CSF on Phase Contrast MRI

  • Elsa Fernández
  • Manuel Graña
  • Jorge Villanúa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6687)


Dynamic velocity-encoded Phase-contrast MRI (PC-MRI) techniques are being used increasingly to quantify pulsatile flows for a variety of flow clinical application. A method for igh resolution segmentation of cerebrospinal fluid (CSF) velocity is described. The method works on PC-MRI with high temporal and spatial resolution. It has been applied in this paper to the CSF flow at the Aqueduct of Sylvius (AS). The approach first selects the regions with high flow applying a threshold on the coefficient of variation of the image pixels velocity profiles. The AS corresponds to the most central detected region. We perform a lattice independent component analysis (LICA) on this small region, so that the image abundances provide the high resolution segmentation of the CSF flow at the AS. Long term goal of our work is to use this detection and segmentation to take some measurements and evaluate the changes in patients with suspected Idiopathic Normal Pressure Hydrocephalus (iNPH).


Hyperspectral Image Idiopathic Normal Pressure Hydrocephalus Cerebral Aqueduct iNPH Patient High Velocity Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.D., Fisher, C.M., Hakim, S., Ojemann, R.G., Sweet, W.H.: Symptomatic occult hydrocephalus with ”Normal” cerebrospinal-fluid pressure. a treatable syndrome. The New England Journal of Medicine 273, 117–126 (1965);PMID: 14303656CrossRefGoogle Scholar
  2. 2.
    Bergsneider, M., McL Black, P., Klinge, P., Marmarou, A., Relkin, N.: Surgical management of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 suppl.), 29–39 (2005); PMID: 16160427Google Scholar
  3. 3.
    Black, P.M.: Idiopathic normal-pressure hydrocephalus. results of shunting in 62 patients. Journal of Neurosurgery 52(3), 371–377 (1980);PMID: 7359191CrossRefGoogle Scholar
  4. 4.
    Bradley, W.G., Scalzo, D., Queralt, J., Nitz, W.N., Atkinson, D.J., Wong, P.: Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2), 523–529 (1996)CrossRefGoogle Scholar
  5. 5.
    Graña, M.: A brief review of lattice computing. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2008, IEEE World Congress on Computational Intelligence, pp. 1777–1781 (June 2008)Google Scholar
  6. 6.
    Graña, M., Chyzhyk, D., García-Sebastián, M., Hernández, C.: Lattice independent component analysis for functional magnetic resonance imaging. Information Sciences (2010) (in Press) Corrected ProofGoogle Scholar
  7. 7.
    Graña, M., Manhaes-Savio, A., García-Sebastián, M., Fernandez, E.: A lattice computing approach for on-line fmri analysis. Image and Vision Computing 28(7), 1155–1161 (2010)CrossRefGoogle Scholar
  8. 8.
    Graña, M., Villaverde, I., Maldonado, J.O., Hernandez, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10-12), 2111–2120 (2009)CrossRefGoogle Scholar
  9. 9.
    Lee, J.H., Lee, H.K., Kim, J.K., Kim, H.J., Park, J.K., Choi, C.G.: CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging. CSF flow quantification of the cerebral aqueduct in normal volunteers using phase contrast cine MR imaging 5(2), 81–86 (2004); PMID: 15235231 PMCID: 2698144 Google Scholar
  10. 10.
    Lotz, J., Meier, C., Leppert, A., Galanski, M.: Cardiovascular flow measurement with Phase-Contrast MR imaging: Basic facts and implementation1. Radiographics 22(3), 651–671 (2002)CrossRefGoogle Scholar
  11. 11.
    Pelc, N.J., Herfkens, R.J., Shimakawa, A., Enzmann, D.R.: Phase contrast cine magnetic resonance imaging. Magnetic Resonance Quarterly 7(4), 229–254 (1991); PMID: 1790111Google Scholar
  12. 12.
    Ritter, G.X., Sussner, P., Diaz de Leon, J.L.: Morphological associative memories. IEEE Transactions on Neural Networks 9(2), 281–293 (1998)CrossRefGoogle Scholar
  13. 13.
    Ritter, G.X., Urcid, G., Schmalz, M.S.: Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10-12), 2101–2110 (2009)CrossRefGoogle Scholar
  14. 14.
    Thomsen, C., Stahlberg, F., Stubgaard, M., Nordell, B.: Fourier analysis of cerebrospinal fluid flow velocities: MR imaging study. the scandinavian flow group. Radiology 177(3), 659–665 (1990); PMID: 2243965CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Elsa Fernández
    • 1
  • Manuel Graña
    • 1
  • Jorge Villanúa
    • 2
  1. 1.Grupo de Inteligencia ComputacionalUniversidad del País VascoSpain
  2. 2.Osatek, Hospital DonostiaSan SebastiánSpain

Personalised recommendations