Skip to main content

Can Selfish Symbioses Effect Higher-Level Selection?

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5778))

Included in the following conference series:

Abstract

The role of symbiosis in macro-evolution is poorly understood. On the one hand, symbiosis seems to be a perfectly normal manifestation of individual selection, on the other hand, in some of the major transitions in evolution it seems to be implicated in the creation of new higher-level units of selection. Here we present a model of individual selection for symbiotic relationships where individuals can genetically specify traits which partially control which other species they associate with – i.e. they can evolve species-specific grouping. We find that when the genetic evolution of symbiotic relationships occurs slowly compared to ecological population dynamics, symbioses form which canalise the combinations of species that commonly occur at local ESSs into new units of selection. Thus even though symbioses will only evolve if they are beneficial to the individual, we find that the symbiotic groups that form are selectively significant and result in combinations of species that are more cooperative than would be possible under individual selection. These findings thus provide a systematic mechanism for creating significant higher-level selective units from individual selection, and support the notion of a significant and systematic role of symbiosis in macro-evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maynard Smith, J., Szathmary, E.: The major transitions in evolution, Oxford (1995)

    Google Scholar 

  2. Margulis, L.: Origins of species: acquired genomes and individuality. BioSystems 31(2-3), 121–125 (1993)

    Article  Google Scholar 

  3. Wilson, D.S.: A theory of group selection. PNAS 72(1), 143–146 (1975)

    Article  MATH  Google Scholar 

  4. Wilson, D.S.: The Natural Selection of Populations and Communities. Benjamin/Cummings, New York (1980)

    Google Scholar 

  5. Wilson, D.S., Dugatkin, L.A.: Group selection and assortative interactions. The American Naturalist 149(2), 336–351 (1997)

    Article  Google Scholar 

  6. Powers, S.T., Mills, R., Penn, A.S., Watson, R.A.: Social niche construction provides an adaptive explanation for new levels of individuality (ABSTRACT). Submitted to Levels of Selection and Individuality in Evolution Workshop, ECAL 2009 (2009)

    Google Scholar 

  7. Powers, S.T., Watson, R.A.: Evolution of Individual Group Size Preference can Increase Group-level Selection and Cooperation. In: ECAL 2009 (2009) (to appear)

    Google Scholar 

  8. Powers, S.T., Penn, A.S., Watson, R.A.: Individual Selection for Cooperative Group Formation. In: Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 585–594. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Snowdon, J., Powers, S.T., Watson, R.A.: Moderate contact between sub-populations promotes evolved assortativity enabling group selection. In: ECAL 2009 (2009) (to appear)

    Google Scholar 

  10. Maynard Smith, J.: Evolution and the Theory of Games, Cambridge (1982)

    Google Scholar 

  11. Axelrod, R.: The Complexity of Cooperation. Princeton (1997)

    Google Scholar 

  12. Hamilton, W.D.: The Genetical Evolution of Social Behaviour I and II. J. Theor. Biol. 7, 1–52 (1964)

    Article  Google Scholar 

  13. Mills, R., Watson, R.A.: Symbiosis Enables the Evolution of Rare Complexes in Structured Environments. In: ECAL 2009 (2009) (to appear)

    Google Scholar 

  14. Noonburg, V.W.: A Neural Network Modeled by an Adaptive Lotka-Volterra System. SIAM Journal on Applied Mathematics 49(6), 1779–1792 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Poderoso, F.C., Fontanari, J.F.: Model ecosystem with variable interspecies interactions. J. Phys. A: Math. Theor. 40, 8723–8738 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Moran, N.A.: Symbiosis as an adaptive process and source of phenotypic complexity. PNAS USA 10, 1073 (2007)

    Google Scholar 

  17. Strogatz: Non-Linear Dynamics and Chaos, Westview (1994)

    Google Scholar 

  18. Watson, R.A., Buckley, C.L., Mills, R.: The Effect of Hebbian Learning on Optimisation in Hopfield Networks. Technical Report, ECS, University of Southampton (2009)

    Google Scholar 

  19. Watson, R.A., Jansen, T.: A Building-Block Royal Road Where Crossover is Provably Essential. In: GECCO 2007, pp. 1452–1459 (2007)

    Google Scholar 

  20. Wagner, G.P., Pavlicev, M., Cheverud, J.M.: The road to modularity. Nature Reviews Genetics 8, 921–931 (2007)

    Article  Google Scholar 

  21. Watson, R.A., Mills, R., Buckley, C.L., Palmius, N., Powers, S.T., Penn, A.S.: Hebbian Learning in Ecosystems: Species that fire together wire together (ABSTRACT). In: ECAL 2009 (2009b) (to appear)

    Google Scholar 

  22. Watson, R.A., Buckley, C.L., Mills, R.: Implicit Hebbian Learning and Distributed Optimisation in Complex Adaptive Systems (in prep)

    Google Scholar 

  23. Watson, R.A., Pollack, J.B.: Modular Interdependency in Complex Dynamical Systems. Artificial Life 11(4), 445–457 (2005)

    Article  Google Scholar 

  24. Mills, R., Watson, R.A.: A symbiosis Algorithm for automatic problem decomposition (2009) (in prep)

    Google Scholar 

  25. Iclanzan, D., Dumitrescu, D.: Overcoming hierarchical difficulty by hill-climbing the building block structure. In: GECCO 2007, pp. 1256–1263 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Watson, R.A., Palmius, N., Mills, R., Powers, S.T., Penn, A. (2011). Can Selfish Symbioses Effect Higher-Level Selection?. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5778. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21314-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21314-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21313-7

  • Online ISBN: 978-3-642-21314-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics