Skip to main content

Hypothesizing about Causal Networks with Positive and Negative Effects by Meta-level Abduction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6489))

Abstract

Meta-level abduction discovers missing links and unknown nodes from incomplete networks to complete paths for observations. In this work, we extend applicability of meta-level abduction to deal with networks containing both positive and negative causal effects. Such networks appear in many domains including biology, in which inhibitory effects are important in signaling and metabolic pathways. Reasoning in networks with inhibition is inevitably nonmonotonic, and involves default assumptions in abduction. We show that meta-level abduction can consistently produce both positive and negative causal relations as well as invented nodes. Case studies of meta-level abduction are presented in p53 signaling networks, in which causal rules are abduced to suppress a tumor with a new protein and to stop DNA synthesis when damage is occurred.

This research is supported in part by the 2008-2011 JSPS Grant-in-Aid for Scientific Research (A) No.,20240016.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T., Tamura, T., Horimoto, K.: Completing Networks Using Observed Data. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809, pp. 126–140. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Gat-Viks, I., Shamir, R.: Chain functions and scoring functions in genetic networks. Bioinformatics 19(suppl.1), i108–i117 (2003)

    Article  Google Scholar 

  3. Inoue, K.: Linear resolution for consequence finding. Artificial Intelligence 56, 301–353 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Inoue, K.: Induction as consequence finding. Machine Learning 55, 109–135 (2004)

    Article  MATH  Google Scholar 

  5. Inoue, K., Bando, H., Nabeshima, H.: Inducing Causal Laws by Regular Inference. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 154–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Inoue, K., Furukawa, K., Kobayashi, I., Nabeshima, H.: Discovering Rules by Meta-level Abduction. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 49–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Inoue, K., Iwanuma, K., Nabeshima, H.: Consequence finding and computing answers with defaults. Journal of Intelligent Information Systems 26, 41–58 (2006)

    Article  Google Scholar 

  8. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abductive hypotheses using an EM algorithm on BDDs. In: Proceedings of IJCAI 2009, pp. 810–815 (2009)

    Google Scholar 

  9. Iwanuma, K., Inoue, K.: Minimal Answer Computation and SOL. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 245–257. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427, 247–252 (2004)

    Article  Google Scholar 

  11. Moyle, S.: Using Theory Completion to Learn a Robot Navigation Control Program. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 182–197. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Muggleton, S.H., Bryant, C.H.: Theory Completion Using Inverse Entailment. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 130–146. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  13. Muggleton, S., Buntine, W.: Machine invention of first-order predicate by inverting resolution. In: Proceedings of the 5th International Workshop on Machine Learning, pp. 339–351. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  14. Nabeshima, H., Iwanuma, K., Inoue, K.: SOLAR: A consequence finding system for advanced reasoning. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 257–263. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Nabeshima, H., Iwanuma, K., Inoue, K., Ray, O.: SOLAR: An automated deduction system for consequence finding. AI Communications 23(2–3), 183–203 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Otero, R.P.: Induction of the Indirect Effects of Actions by Monotonic Methods. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 279–294. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Pearl, J.: Causality: Models, Reasoning, and Inference, 2nd edn., Cambridge (2009)

    Google Scholar 

  18. Poole, D.: A logical framework for default reasoning. Artificial Intelligence 36, 27–47 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prives, C., Hall, P.A.: The p53 pathway. Journal of Pathology 187, 112–126 (1999)

    Article  Google Scholar 

  20. Ray, O., Inoue, K.: A Consequence Finding Approach for Full Clausal Abduction. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 173–184. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  21. Ray, O., Whelan, K., King, R.: Logic-based steady-state analysis and revision of metabolic networks with inhibition. In: Proceedings of the 3rd International Workshop on Intelligent Informatics in Biology and Medicine, pp. 661–666 (2010)

    Google Scholar 

  22. Reiser, P.G.K., King, R.D., Kell, D.B., Muggleton, S.H., Bryant, C.H., Oliver, S.G.: Developing a logical model of yeast metabolism. Electronic Transactions in Artificial Intelligence 5-B2(024), 223–244 (2001)

    Google Scholar 

  23. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schaub, T., Thiele, S.: Metabolic Network Expansion with Answer Set Programming. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Schurz, G.: Patterns of abduction. Synthese 164(2), 201–234 (2008)

    Article  MathSciNet  Google Scholar 

  26. Shmulevich, I., Dougherty, E.R., Kim, S., Zhang, W.: Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)

    Article  Google Scholar 

  27. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Muggleton, S.: Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning 65, 209–230 (2006)

    Article  Google Scholar 

  28. Tran, N., Baral, C.: Hypothesizing about signaling networks. Journal of Applied Logic 7(3), 253–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yamamoto, Y., Inoue, K., Doncescu, A.: Integrating abduction and induction in biological inference using CF-Induction. In: Lodhi, H., Muggleton, S. (eds.) Elements of Computational Systems Biology, pp. 213–234. John Wiley & Sons, Chichester (2010)

    Chapter  Google Scholar 

  30. Zupan, B., Demsar, J., Bratko, I., Juvan, P., Halter, J.A., Kuspa, A., Shaulsky, G.: GenePath: A system for automated construction of genetic networks from mutant data. Bioinformatics 19(3), 383–389 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Inoue, K., Doncescu, A., Nabeshima, H. (2011). Hypothesizing about Causal Networks with Positive and Negative Effects by Meta-level Abduction. In: Frasconi, P., Lisi, F.A. (eds) Inductive Logic Programming. ILP 2010. Lecture Notes in Computer Science(), vol 6489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21295-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21295-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21294-9

  • Online ISBN: 978-3-642-21295-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics