Biofilms and Role to Infection and Disease in Veterinary Medicine

  • Alice J. Gardner
  • Steven L. Percival
  • Christine A. CochraneEmail author
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 6)


Biofilms play an increasing role within the medical and veterinary community. Due to the increased resistance of a biofilm, they can have direct and indirect effects upon a range of infections and diseases including chronic non-healing wounds, implant/prosthesis infection and mastitis. These problems can have significant effects on other industries, for example mastitis can have a detrimental effect on milk yield in the dairy industry. The degree of severity biofilms can cause increases the pressure on the veterinary industry to diagnose and treat infections and diseases quicker and with more effective results. With maturity, biofilms may become more resistant to the effects of antimicrobials which make the infection harder to treat. As elaborated on in previous chapters, many antibiotherapy treatments currently used to treat bacterial infections are aimed at planktonic bacterial cells as opposed to cells encased in a biofilm; this makes their treatment increasingly problematic. Without adequate diagnostic and treatment protocols to treat veterinary biofilms, their impact will remain a significant challenge.


Somatic Cell Count Planktonic Cell Persister Cell Major Histocompatability Complex Class Mastitis Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allison DG, Ruiz B et al (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 167(2):179–184PubMedCrossRefGoogle Scholar
  2. Anderson GG, O'Toole GA (2010) Innate and induced resistance mechanisms of bacterial biofilms. Current Topics in Microbiology and Immunology 322: 85–105Google Scholar
  3. Antonios VS, Noel AA et al (2006) Prosthetic vascular graft infection: a risk factor analysis using a case-control study. J Infect 53(1):49–55PubMedCrossRefGoogle Scholar
  4. Bishop Y (ed) (2005) The veterinary formulary. Pharmaceutical Press, LondonGoogle Scholar
  5. Bjarnsholt T, Kirketerp-Møller K et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16(1):2–10PubMedCrossRefGoogle Scholar
  6. Bridier A, Dubois-Brissonnet F et al (2010) The biofilm architecture of sixty opportunistic pathogens deciphered using a high throughput CLSM method. J Microbiol Methods 82:64–70PubMedCrossRefGoogle Scholar
  7. Brooun A, Liu S et al (2000) a dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646PubMedCrossRefGoogle Scholar
  8. Browing A, Cumberlege et al (1995) The Dairy products (Hygiene) Regulation 1995. 1086. f. a. f. Ministry of AgricultureGoogle Scholar
  9. Burke JP (2003) Infection control – a problem for patient safety. N Engl J Med 348(7):651–656PubMedCrossRefGoogle Scholar
  10. Carrick JB, Begg AP (2008) Peripheral blood leukocytes. Vet Clin North Am Equine Pract 24(2):239–259PubMedCrossRefGoogle Scholar
  11. Cerca N, Jefferson K et al (2006) Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state. Infect Immun 74(8):4849–4855PubMedCrossRefGoogle Scholar
  12. Chaw KC, Manimaran M et al (2005) Role of silver ions in destabilisation of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermis biofilms. Antimicrob Agents Chemother 49(12):4853–4859PubMedCrossRefGoogle Scholar
  13. Chin J (1982) Raw milk; a continuing vehicle for the transmission of infectious disease agents in the United States. J Infect Dis 146(3):440–441PubMedCrossRefGoogle Scholar
  14. Choong S, Wood S et al (2001) Catheter-associated urinary tract infection and encrustation. Int J Antimicrob Agents 17(4):305–310PubMedCrossRefGoogle Scholar
  15. Cifrian E, Guidry AJ et al (1994) Adherence of Staphylococcus aureus to cultured bovine mammary epithelial cells. J Dairy Sci 77(4):970–983PubMedCrossRefGoogle Scholar
  16. Clutterbuck AL, Woods EJ et al (2007) Biofilms and their relevance to veterinary medicine. Vet Microbiol 121(1–2):1–17PubMedCrossRefGoogle Scholar
  17. Cochrane CA (1997) Models in vivo of wound healing in the horse and the role of growth factors. Vet Dermatol 8:259–272CrossRefGoogle Scholar
  18. Costerton JW (2004) A short history of the development of the biofilm concept. In: Ghannoum MA, O’Toole GA (eds) Microbial biofilms. ASM Press, Washington, pp 4–19Google Scholar
  19. Costerton JW, Lewandowski Z et al (1995) Microbial biofilms. Annu Rev Microbiol 49(1):711–745PubMedCrossRefGoogle Scholar
  20. Costerton JW, Stewart PS et al (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedCrossRefGoogle Scholar
  21. Costerton JW, Veeh R et al (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112(10):1466–1477PubMedGoogle Scholar
  22. Cowan MM, Warren TM et al (1991) Mixed-species colonization of solid surfaces in laboratory biofilms. Biofouling 3(1):23–34CrossRefGoogle Scholar
  23. Davies DG, Geesey GG (1995) Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol 61(3):860–867PubMedGoogle Scholar
  24. Davies DG, Chakrabarty AM et al (1993) Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa.. Appl Environ Microbiol 59(4):1181–1186PubMedGoogle Scholar
  25. Deluyker HA, Chester ST et al (1999) A multilocation clinical trial in lactating dairy cows affected with clinical mastitis to compare the efficacy of treatment with intramammary infusions of a lincomycin/neomycin combination with an ampicillin/cloxacillin combination. J Vet Pharmacol Ther 22(4):274–282PubMedCrossRefGoogle Scholar
  26. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277–281PubMedCrossRefGoogle Scholar
  27. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedCrossRefGoogle Scholar
  28. Edwards JF, Lassala AL et al (2008) Staphylococcus-associated abortions in Ewes with long-term central venous catheterization. Vet Pathol 45(6):881–888PubMedCrossRefGoogle Scholar
  29. Erskine RJ, Walker RD et al (2002) Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J Dairy Sci 85(5):1111–1118PubMedCrossRefGoogle Scholar
  30. Fedtke I, Gotz F et al (2004) Bacterial evasion of innate host defenses – the Staphylococcus aureus lesson. Int J Med Microbiol 294:189–194PubMedCrossRefGoogle Scholar
  31. Fera P, Siebel MA et al (1989) Seasonal variations in bacterial colonisation of stainless steel, aluminium and polycarbonate surfaces in a sea water flow system. Biofouling 1(3):251–261CrossRefGoogle Scholar
  32. Ferris FG, Schultze S et al (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55(5):1249–1257PubMedGoogle Scholar
  33. Ganz T (2001) Antimicrobial proteins and peptides in host defense. Semin Respir Infect 16(1):4–10PubMedCrossRefGoogle Scholar
  34. Gillespie IA, Adak GK et al (2003) Milkborne general outbreaks of infectious intestinal disease, England and Wales, 1992–2000. Epidemiol Infect 130(3):461–468PubMedGoogle Scholar
  35. Guérin-Faublée V, Tardy F et al (2002) Antimicrobial susceptibility of Streptococcus species isolated from clinical mastitis in dairy cows. Int J Antimicrob Agents 19(3):219–226PubMedCrossRefGoogle Scholar
  36. Hall-Stoodley L, Stoodley P (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends Microbiol 13(1):7–10PubMedCrossRefGoogle Scholar
  37. Hammond A, Dertien J et al (2010) Serum inhibits P. aeruginosa biofilm formation on plastic surfaces and intravenous catheters. J Surg Res 159(2):735–746PubMedCrossRefGoogle Scholar
  38. Hansson CJ, Hoborn J et al (1995) The microbial flora in venous leg ulcers without signs of clinical infection. Acta Derm Venereol 75:24–30PubMedGoogle Scholar
  39. Harmon RJ (1994) Physiology of mastitis and factors affecting somatic cell counts. J Dairy Sci 77(7):2103–2112PubMedCrossRefGoogle Scholar
  40. Hensen SM, Pavičić MJ et al (2000) Location of Staphylococcus aureus within the experimentally infected Bovine Udder and the expression of capsular polysaccharide type 5 in situ. J Dairy Sci 83(9):1966–1975PubMedCrossRefGoogle Scholar
  41. Hillerton JE, Kleim KE (2002) Effective treatment of Streptococcus uberis clinical mastitis to minimise the use of antibiotics. Journal of Dairy Science 85(4):1009–1014Google Scholar
  42. Jackson PGG (1986) Equine mastitis: comparative lessons. Equine Vet J 18(2):88–89PubMedCrossRefGoogle Scholar
  43. Jensen PO, Bjarnsholt T et al (2007) Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology 153(5):1329–1338PubMedCrossRefGoogle Scholar
  44. Jesaitis AJ, Franklin MJ et al (2003) Compromised host defence on Pseudomonas aeruginosa biofilms: characterisation of neutrophil and biofilm interactions. J Immunol 171:4329–4339PubMedGoogle Scholar
  45. Kharazmi A (1991) Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa. Immunol Lett 30:201–205PubMedCrossRefGoogle Scholar
  46. Khoury AE, Lam K et al (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38(3):M174–M178PubMedCrossRefGoogle Scholar
  47. Kowalczuk D, Ginalska G et al (2010) Characterization of the developed antimicrobial urological catheters. Int J Pharm 402(1–2):175–183Google Scholar
  48. Krahwinkel DJ, Boothe HW (2006) Topical and systemic medications for wounds. Vet Clin North Am Small Anim Pract 36:739–757PubMedCrossRefGoogle Scholar
  49. Lappin-Scott HM, Bass C (2001) Biofilm formation: attachment, growth and detachment of microbes from surfaces. Am J Infect Control 29:250–251PubMedCrossRefGoogle Scholar
  50. Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9(1):21–28PubMedGoogle Scholar
  51. LeBlanc M, McLaurin BI et al (1986) Relationships among serum immunoglobulin concentration in foals, colostral specific gravity, and colostral immunoglobulin concentration. J Am Vet Med Assoc 189(1):57–60PubMedGoogle Scholar
  52. Lee B, Haagensen AJ et al (2005) Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43(10):5247–5255PubMedCrossRefGoogle Scholar
  53. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007PubMedCrossRefGoogle Scholar
  54. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry 70(2):267–274PubMedGoogle Scholar
  55. Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131PubMedCrossRefGoogle Scholar
  56. Lin P, Chen H-L, Huang C-T, Su L-H, Chiu C-H (2010) Biofilm production, use of intravascular indwelling catheters and inappropriate antimicrobial therapy as predictors of fatality in Chryseobacterium meningosepticum bacteraemia. International Journal of Antimicrobial Agents 36(5):436–440Google Scholar
  57. Marion K, Freney J et al (2006) Using an efficient biofilm detaching agent: an essential step for the improvement of endoscope reprocessing protocols. J Hosp Infect 64(2):136–142PubMedCrossRefGoogle Scholar
  58. Marsh-Ng ML, Burney DP et al (2007) Surveillance of infections associated with intravenous catheters in dogs and cats in an intensive care unit. J Am Anim Hosp Assoc 43(1):13–20PubMedGoogle Scholar
  59. Mathews KA, Brooks MJ et al (1996) A prospective study of intravenous catheter contamination. J Vet Emerg Crit Care 6(1):33–43CrossRefGoogle Scholar
  60. Melchior MB, Fink-Gremmels J et al (2006a) Comparative assessment of the antimicrobial susceptibility of Staphylococcus aureus isolates from bovine mastitis in biofilm versus planktonic culture. J Vet Med B 53(7):326–332CrossRefGoogle Scholar
  61. Melchior MB, Vaarkamp H et al (2006b) Biofilms: a role in recurrent mastitis infections? Vet J 171(3):398–407PubMedCrossRefGoogle Scholar
  62. Melchior MB, Fink-Gremmels J et al (2007) Extended antimicrobial susceptibility assay for Staphylococcus aureus isolates from bovine mastitis growing in biofilms. Vet Microbiol 125(1–2):141–149PubMedCrossRefGoogle Scholar
  63. Melchoir MB, van Osch MHJ et al (2009) Biofilm formation and genotyping of Staphylococcus aureus bovine mastitis isolates: evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol 137:83–89CrossRefGoogle Scholar
  64. Morley PS, Apley MD et al (2005) Antimicrobial drug use in veterinary medicine. J Vet Intern Med 19(4):617–629PubMedCrossRefGoogle Scholar
  65. Nagase N, Sasaki M et al (2002) Isolation and species distribution of staphylococci from animal and human skin. J Vet Med Sci 64(3):245–250PubMedCrossRefGoogle Scholar
  66. Nicoll A, Gay NJ et al (2005) Theory of infectious disease transmission and control. In: Borriello SP, Murray PR, Funke G (eds) Topley and Wilson's microbiology and microbial infections: bacteriology, vol 1. Hodder Arnold, London, pp 335–358Google Scholar
  67. Oliveira R, Nunes SF et al (2007) Time course of biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis mastitis isolates. Vet Microbiol 124:187–191PubMedCrossRefGoogle Scholar
  68. Orsini JA, Elce Y et al (2004) Management of severely infected wounds in the equine patient. Clin Tech Equine Prac 3:225–236CrossRefGoogle Scholar
  69. O'Toole G, Kaplan HB et al (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedCrossRefGoogle Scholar
  70. Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701PubMedCrossRefGoogle Scholar
  71. Pascual A (2002) Pathogenesis of catheter-related infections: lessons for new designs. Clin Microbiol Infect 8(5):256–264PubMedCrossRefGoogle Scholar
  72. Pawlowski KS, Wawro D et al (2005) Bacterial biofilm formation on a human cochlear implant. Otol Neurotol 26(5):972–975PubMedCrossRefGoogle Scholar
  73. Percival SL, Bowler PG (2004) Biofilms and their potential role in wound healing. Wounds 16:234–240Google Scholar
  74. Percival SL, Bowler P et al (2008) Assessing the effect of an antimicrobial wound dressing on biofilms. Wound Repair Regen 16:52–57PubMedCrossRefGoogle Scholar
  75. Potera C (1999) Forging a link between biofilms and disease. Science 283(5409):1837–1839PubMedCrossRefGoogle Scholar
  76. Sol J, Sampimon OC et al (1997) Factors associated with bacteriological cure during lactation after therapy for subclinical mastitis caused by Staphylococcus aureus. J Dairy Sci 80(11):2803–2808PubMedCrossRefGoogle Scholar
  77. Songer JG, Post KW (2005) Veterinary microbiology: bacterial and fungal agents of animal disease. Elsevier Saunders, MissouriGoogle Scholar
  78. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138PubMedCrossRefGoogle Scholar
  79. Stickler D, Ganderton L et al (1993) Proteus mirabilis; biofilms and the encrustation of urethral catheters. Urol Res 21(6):407–411PubMedCrossRefGoogle Scholar
  80. Suller MTE, Anthony VJ et al (2005) Factors modulating the pH at which calcium and magnesium phosphates precipitate from human urine. Urol Res 33(4):254–260PubMedCrossRefGoogle Scholar
  81. Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9PubMedGoogle Scholar
  82. Targowski SP (1983) Role of immune factors in protection of mammary gland. J Dairy Sci 66(8):1781–1789PubMedCrossRefGoogle Scholar
  83. Tenke P, Kovacs B et al (2006) The role of biofilm infection in urology. World J Urol 24(1):13–20PubMedCrossRefGoogle Scholar
  84. Theoret CL (2004) Wound repair in the horse: problems and proposed innovative solutions. Clin Tech Equine Prac 3:134–140CrossRefGoogle Scholar
  85. Theoret CL (2006) Wound repair: equine surgery. WB Saunders, Saint Louis, pp 44–62CrossRefGoogle Scholar
  86. Turetgen I, Ilhan-Sungur E, Cotuk A (2007) Effects of short-term drying on biofilm-associated bacteria. Annals of Microbiology 57(2):277–280Google Scholar
  87. Waldorf H, Fewkes J (1995) Wound healing. Adv Dermatol 10:77–96PubMedGoogle Scholar
  88. Waldron DR, Zimmerman-Pope N (2003) Superficial skin wounds. In: Slater D (ed) Textbook of small animal surgery. WB Saurnders, Philadelphia, pp 259–273Google Scholar
  89. Ward KH, Olson ME et al (1992) Mechanism of persistent infection associated with peritoneal implants. J Med Microbiol 36(6):406–413PubMedCrossRefGoogle Scholar
  90. Warren JW (2001) Catheter-associated urinary tract infections. Int J Antimicrob Agents 17(4):299–303PubMedCrossRefGoogle Scholar
  91. Wieman TJ (2005) Principles of management: the diabetic foot. Am J Surg 190(2):295–299PubMedCrossRefGoogle Scholar
  92. Wilson DJ, Gonzalez RN et al (1999) Comparison of seven antibiotic treatments with no treatment for bacteriological efficacy against bovine mastitis pathogens. J Dairy Sci 82(8):1664–1670PubMedCrossRefGoogle Scholar
  93. Wyder AB, Boss R et al (2011) Streptococcus spp. and related bacteria: their identification and their pathogenic potential for chronic mastitis: a molecular approach. Res Vet Sci (in press)Google Scholar
  94. Xu KD, McFeters GA et al (2000) Biofilm resistance to antimicrobial agents. Microbiology 146(3):547–549PubMedGoogle Scholar
  95. Zou S, Brady HA et al (1998) Protective factors in mammary gland secretions during the periparturient period in the mare. J Equine Vet Sci 18(3):184–188CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Alice J. Gardner
    • 1
  • Steven L. Percival
    • 2
  • Christine A. Cochrane
    • 3
    Email author
  1. 1.Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityCeredigionUK
  2. 2.Department of Pathology, Medical SchoolWest Virginia UniversityMorgantownUSA
  3. 3.Faculty of Health and Life Sciences, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolNestonUK

Personalised recommendations