Skip to main content

Biofilms and Antimicrobial Resistance in Companion Animals

  • Chapter
  • First Online:
Biofilms and Veterinary Medicine

Part of the book series: Springer Series on Biofilms ((BIOFILMS,volume 6))

Abstract

Bacterial resistance to antimicrobials is a complex interaction of bacterial populations, resistance mechanisms, resistance genes and antimicrobial agents. Although comparatively little research has focused on bacteria from companion animals, many of the mechanisms conferring resistance identified in bacteria originating from humans have also been recognised in bacterial isolates from dogs, cats and horses. In addition to these well documented resistance mechanisms, it has recently been acknowledged that biofilm formation can contribute to the resistance encountered in some bacterial populations. Biofilm-associated resistance appears to be multifactorial, with interaction of specific biofilm resistance mechanisms and potentially other classical antimicrobial resistance mechanisms. Currently, there is incomplete understanding of this complex situation, but work continues to better characterise the processes involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup FM (2005) Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol 96:271–281

    PubMed  CAS  Google Scholar 

  • Abraham EP, Chain E (1988) An enzyme from bacteria able to destroy Penicillin (Reprinted From Nature, Vol 146, Pg 837, 1940). Rev Infect Dis 10:677–678

    PubMed  CAS  Google Scholar 

  • Adair CG, Gorman SP, Feron BM, Byers LM, Jones DS, Goldsmith CE, Moore JE, Kerr JR, Curran MD, Hogg G, Webb CH, McCarthy GJ, Milligan KR (1999) Implications of endotracheal tube biofilm for ventilator-associated pneumonia. Intensive Care Med 25:1072–1076

    PubMed  CAS  Google Scholar 

  • Ahern BJ, Richardson DW, Boston RC, Schaer TP (2010) Orthopedic infections in equine long bone fractures and arthrodeses treated by internal fixation: 192 cases (1990–2006). Vet Surg 39:588–593

    PubMed  Google Scholar 

  • Albihn A, Baverud V, Magnusson U (2003) Uterine microbiology and antimicrobial susceptibility in isolated bacteria from mares with fertility problems. Acta Vet Scand 44:121–129

    PubMed  CAS  Google Scholar 

  • Anderl JN, Franklin MJ, Stewart PS (2000) Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44:1818–1824

    PubMed  CAS  Google Scholar 

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    PubMed  CAS  Google Scholar 

  • Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271

    PubMed  CAS  Google Scholar 

  • Ando T, Itakura S, Uchii K, Sobue R, Maeda S (2009) Horizontal transfer of non-conjugative plasmid in colony biofilm of Escherichia coli on food-based media. World J Microbiol Biotechnol 25:1865–1869

    Google Scholar 

  • Arpin C, Quentin C, Grobost F, Cambau E, Robert J, Dubois V, Coulange L, Andre C, Sci Comm O (2009) Nationwide survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in the French community setting. J Antimicrob Chemother 63:1205–1214

    PubMed  CAS  Google Scholar 

  • Arthur M, Molinas C, Depardieu F, Courvalin P (1993) Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127

    PubMed  CAS  Google Scholar 

  • Arthur M, Reynolds P, Courvalin P (1996a) Glycopeptide resistance in enterococci. Trends Microbiol 4:401–407

    PubMed  CAS  Google Scholar 

  • Arthur M, Reynolds PE, Depardieu F, Evers S, DutkaMalen S, Quintiliani R, Courvalin P (1996b) Mechanisms of glycopeptide resistance in enterococci. J Infect 32:11–16

    PubMed  CAS  Google Scholar 

  • Bagcigil FA, Moodley A, Baptiste KE, Jensen VF, Guardabassi L (2007) Occurrence, species distribution, antimicrobial resistance and clonality of methicillin- and erythromycin-resistant staphylococci in the nasal cavity of domestic animals. Vet Microbiol 121:307–315

    PubMed  CAS  Google Scholar 

  • Bagge N, Ciofu O, Skovgaard LT, Hoiby N (2000) Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase. APMIS 108:589–600

    PubMed  CAS  Google Scholar 

  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187

    PubMed  CAS  Google Scholar 

  • Baptiste KE, Williams K, Willams NJ, Wattret A, Clegg PD, Dawson S, Corkill J, O’Neill T, Hart CA (2005) Methicillin resistant staphylococci in companion animals. Emerg Infect Dis 11:1942–1944

    PubMed  Google Scholar 

  • Bauernfeind A, Grimm H, Schweighart S (1990) A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection 18:294–298

    PubMed  CAS  Google Scholar 

  • Baverud V, Gustafsson A, Franklin A, Aspan A, Gunnarsson A (2003) Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471

    PubMed  CAS  Google Scholar 

  • Blahna MT, Zalewski CA, Reuer J, Kahlmeter G, Foxman B, Marrs CF (2006) The role of horizontal gene transfer in the spread of trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia coli in Europe and Canada. J Antimicrob Chemother 57:666–672

    PubMed  CAS  Google Scholar 

  • Blumberg HM, Rimland D, Carroll DJ, Terry P, Wachsmuth IK (1991) Rapid development of ciprofloxacin resistance in methicillin-susceptible and methicillin-resistant Staphylococcus aureus. J Infect Dis 163:1279–1285

    PubMed  CAS  Google Scholar 

  • Boost MV, O’Donoghue MM, James A (2008) Prevalence of Staphylococcus aureus carriage among dogs and their owners. Epidemiol Infect 136:953–964

    PubMed  CAS  Google Scholar 

  • Boothe JH, Morton J, Petisi JP, Wilkinson RG, Williams JH (1953) Tetracycline. J Am Chem Soc 75:4621

    CAS  Google Scholar 

  • Bradford PA (2001) Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14:933–951

    PubMed  CAS  Google Scholar 

  • Bradford PA, Urban C, Mariano N, Projan SJ, Rahal JJ, Bush K (1997) Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the loss of an outer membrane protein. Antimicrob Agents Chemother 41:563–569

    PubMed  CAS  Google Scholar 

  • Brinas L, Zarazaga M, Saenz Y, Ruiz-Larrea F, Torres C (2002) Beta-lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob Agents Chemother 46:3156–3163

    PubMed  CAS  Google Scholar 

  • Briñas L, Moreno MA, Teshager T, Zarazaga M, Sáenz Y, Porrero C, Dominguez L, Torres T (2003) Beta-lactamase characterization in Escherichia coli isolates with diminished susceptibility or resistance to extended-spectrum cephalosporins recovered from sick animals in Spain. Microb Drug Resist 9:201–209

    PubMed  Google Scholar 

  • Brooun A, Liu SH, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44:640–646

    PubMed  CAS  Google Scholar 

  • Brown DFJ, Reynolds PE (1980) Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett 122:275–278

    PubMed  CAS  Google Scholar 

  • Bryan A, Shapir N, Sadowsky MJ (2004) Frequency and distribution of tetracycline resistance genes in genetically diverse, nonselected, and nonclinical Escherichia coli strains, isolated from diverse human and animal sources. Appl Environ Microbiol 70:2503–2507

    PubMed  CAS  Google Scholar 

  • Bucknell DG, Gasser RB, Irving A, Whithear K (1997) Antimicrobial resistance in Salmonella and Escherichia coli isolated from horses. Aust Vet J 75:355–356

    PubMed  CAS  Google Scholar 

  • Carattoli A (2008) Animal reservoirs for extended spectrum beta-lactamase producers. Clin Microbiol Infect 14:117–123

    PubMed  Google Scholar 

  • Cavaco LM, Hansen DS, Friis-Moller A, Aarestrup FM, Hasman H, Frimodt-Moller N (2007) First detection of plasmid-mediated quinolone resistance (qnrA and qnrS) in Escherichia coli strains isolated from humans in Scandinavia. J Antimicrob Chemother 59:804–805

    PubMed  CAS  Google Scholar 

  • Cavaco LM, Hasman H, Xia S, Aarestrup FM (2009) qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother 53:603–608

    PubMed  CAS  Google Scholar 

  • Chen L, Chen ZL, Liu JH, Zeng ZL, Ma JY, Jiang HX (2007) Emergence of RmtB methylase-producing Escherichia coli and Enterobacter cloacae isolates from pigs in China. J Antimicrob Chemother 59:880–885

    PubMed  CAS  Google Scholar 

  • Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232

    PubMed  CAS  Google Scholar 

  • Corkill JE, Anson JJ, Hart CA (2005) High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. J Antimicrob Chemother 56:1115–1117

    PubMed  CAS  Google Scholar 

  • Cormio L, VuopioVarkila J, Siitonen A, Talja M, Ruutu M (1996) Bacterial adhesion and biofilm formation on various double-J stents in vivo and in vitro. Scand J Urol Nephrol 30:19–24

    PubMed  CAS  Google Scholar 

  • Corrente M, D’Abramo M, Latronico F, Greco MF, Bellacicco AL, Greco G, Martella V, Buonavoglia D (2009) Methicillin-resistant coagulase negative staphylococci isolated from horses. New Microbiol 32:311–314

    PubMed  Google Scholar 

  • D’Costa VM, Griffiths E, Wright GD (2007) Expanding the soil antibiotic resistome: exploring environmental diversity. Curr Opin Microbiol 10:481–489

    PubMed  Google Scholar 

  • Das JR, Bhakoo M, Jones MV, Gilbert P (1998) Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces. J Appl Microbiol 84:852–858

    PubMed  CAS  Google Scholar 

  • Datta N, Kontomichalou P (1965) Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:239

    PubMed  CAS  Google Scholar 

  • Datta N, Nugent M, Amyes SGB, McNeilly P (1979) Multiple mechanisms of trimethoprim resistance in strains of Escherichia coli from a patient treated with long-term co-trimoxazole. J Antimicrob Chemother 5:399–406

    PubMed  CAS  Google Scholar 

  • Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122

    PubMed  CAS  Google Scholar 

  • de Beer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138

    PubMed  Google Scholar 

  • De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45:1761–1770

    PubMed  Google Scholar 

  • Dejonge BLM, Chang YS, Gage D, Tomasz A (1992) Peptidoglycan composition of a highly methicillin-resistant Staphylococcus aureus strain – the role of penicillin binding protein-2a. J Biol Chem 267:11248–11254

    CAS  Google Scholar 

  • Devriese LA, Ieven M, Goossens H, Vandamme P, Pot B, Hommez J, Haesebrouck F (1996) Presence of vancomycin-resistant enterococci in farm and pet animals. Antimicrob Agents Chemother 40:2285–2287

    PubMed  CAS  Google Scholar 

  • Domagk G (1935) A new class of disinfectant. Dtsch Med Wochenschr 61:829–832

    CAS  Google Scholar 

  • Donelli G (2006) Vascular catheter-related infection and sepsis. Surg Infect (Larchmt) 7(Suppl 2):S25–S27

    Google Scholar 

  • Driffield K, Miller K, Bostock JM, O’Neill AJ, Chopra I (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61:1053–1056

    PubMed  CAS  Google Scholar 

  • Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61:377–392

    PubMed  CAS  Google Scholar 

  • Dunowska M, Morley PS, Traub-Dargatz JL, Hyatt DR, Dargatz DA (2006) Impact of hospitalization and antimicrobial drug administration on antimicrobial susceptibility patterns of commensal Escherichia coli isolated from the feces of horses. J Am Vet Med Assoc 228:1909–1917

    PubMed  Google Scholar 

  • Ewers C, Grobbel M, Stamm I, Kopp PA, Diehl I, Semmler T, Fruth A, Beutlich J, Guerra B, Wieler LH, Guenther S (2010) Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J Antimicrob Chemother 65:651–660

    PubMed  CAS  Google Scholar 

  • Fine DM, Tobias AH (2007) Cardiovascular device infections in dogs: report of 8 cases and review of the literature. J Vet Intern Med 21:1265–1271

    PubMed  Google Scholar 

  • Fleming A (1932) On the specific antibacterial properties of penicillin and potassium tellurite – incorporating a method of demonstrating some bacterial antiagonisms. J Pathol Bacteriol 35:831–842

    CAS  Google Scholar 

  • Fluit AC, Wielders CLC, Verhoef J, Schmitz FJ (2001) Epidemiology and susceptibility of 3,051 Staphylococcus aureus isolates from 25 university hospitals participating in the European SENTRY study. J Clin Microbiol 39:3727–3732

    PubMed  CAS  Google Scholar 

  • Fux CA, Stoodley P, Hall-Stoodley L, Costerton JW (2003) Bacterial biofilms: a diagnostic and therapeutic challenge. Expert Rev Anti Infect Ther 1:667–683

    PubMed  Google Scholar 

  • Gal Z, Kovacs P, Hernadi F, Barabas G, Kiss L, Igloi A, Szabo I (2001) Investigation of oxacillin-hydrolyzing beta-lactamase in borderline methicillin-resistant clinical isolates of Staphylococcus aureus. Chemotherapy 47:233–238

    PubMed  CAS  Google Scholar 

  • Galimand M, Courvalin P, Lambert T (2003) Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob Agents Chemother 47:2565–2571

    PubMed  CAS  Google Scholar 

  • Gaynor M, Mankin AS (2003) Macrolide antibiotics: binding site, mechanism of action, resistance. Curr Top Med Chem 3:949–960

    PubMed  CAS  Google Scholar 

  • Georgopapadakou NH, Smith SA, Bonner DP (1982) Penicillin-binding proteins in a Staphylococcus aureus strain resistant to specific beta-lactam antibiotics. Antimicrob Agents Chemother 22:172–175

    PubMed  CAS  Google Scholar 

  • Gibson JS, Cobbold RN, Heisig P, Sidjabat HE, Kyaw-Tanner MT, Trott DJ (2010a) Identification of Qnr and AAC(6′)-1b-cr plasmid-mediated fluoroquinolone resistance determinants in multidrug-resistant Enterobacter spp. isolated from extraintestinal infections in companion animals. Vet Microbiol 143:329–336

    PubMed  CAS  Google Scholar 

  • Gibson JS, Cobbold RN, Trott DJ (2010b) Characterization of multidrug-resistant Escherichia coli isolated from extraintestinal clinical infections in animals. J Med Microbiol 59:592–598

    PubMed  CAS  Google Scholar 

  • Gilbert P, Collier PJ, Brown MR (1990) Influence of growth rate on susceptibility to antimicrobial agents: biofilms, cell cycle, dormancy, and stringent response. Antimicrob Agents Chemother 34:1865–1868

    PubMed  CAS  Google Scholar 

  • Gonzalez-Zorn B, Teshager T, Casas M, Porrero MC, Moreno MA, Courvalin P, Dominguez L (2005) armA and aminoglycoside resistance in Escherichia coli. Emerg Infect Dis 11:954–956

    PubMed  CAS  Google Scholar 

  • Goto T, Nakame Y, Nishida M, Ohi Y (1999) In vitro bactericidal activities of beta-lactamases, amikacin, and fluoroquinolones against Pseudomonas aeruginosa biofilm in artificial urine. Urology 53:1058–1062

    PubMed  CAS  Google Scholar 

  • Gristina AG, Oga M, Webb LX, Hobgood CD (1985) Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 228:990–993

    PubMed  CAS  Google Scholar 

  • Grobbel M, Lubke-Becker A, Alesik E, Schwarz S, Wallmann J, Werckenthin C, Wieler LH (2007) Antimicrobial susceptibility of Escherichia coli from swine, horses, dogs and cats as determined in the BfT-GermVet monitoring program 2004–2006. Berl Münch Tierärztl Wochenschr 120:391–401

    PubMed  CAS  Google Scholar 

  • Hall RM, Collis CM (1995) Mobile gene cassettes and integrons – capture and spread of genes by site-specific recombination. Mol Microbiol 15:593–600

    PubMed  CAS  Google Scholar 

  • Hall LMC, Henderson-Begg SK (2006) Hypermutable bacteria isolated from humans – a critical analysis. Microbiology 152:2505–2514

    PubMed  CAS  Google Scholar 

  • Hansen SK, Rainey PB, Haagensen JAJ, Molin S (2007) Evolution of species interactions in a biofilm community. Nature 445:533–536

    PubMed  CAS  Google Scholar 

  • Hanssen AM, Sollid JUE (2006) SCCmec in staphylococci: genes on the move. FEMS Immunol Med Microbiol 46:8–20

    PubMed  CAS  Google Scholar 

  • Harihara H, Barnum DA (1973) Drug resistance among pathogenic Enterobacteriaceae from animals in Ontario. Can J Public Health 64:69

    Google Scholar 

  • Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K (2005) Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother 49:801–803

    PubMed  CAS  Google Scholar 

  • Heikkila E, Renkonen OV, Sunila R, Uurasmaa P, Huovinen P (1990) The emergence and mechanisms of trimethoprim resistance in Escherichia coli isolated from outpatients in Finland. J Antimicrob Chemother 25:275–283

    PubMed  CAS  Google Scholar 

  • Hopkins KL, Batchelor MJ, Liebana E, Deheer-Graham AP, Threlfalla EJ (2006) Characterisation of CTX-M and AmpC genes in human isolates of Escherichia coli identified between 1995 and 2003 in England and Wales. Int J Antimicrob Agents 28:180–192

    PubMed  CAS  Google Scholar 

  • Huovinen P, Sundstrom L, Swedberg G, Skold O (1995) Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother 39:279–289

    PubMed  CAS  Google Scholar 

  • Huys G, D’Haene K, Collard JM, Swings J (2004) Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl Environ Microbiol 70:1555–1562

    PubMed  CAS  Google Scholar 

  • Irina F, Misic D, Ruzica A (2007) Investigation of the presence of extended spectrum beta-lactamases (ESBL) in multiresistant strains of E. coli and Salmonella species originated from domestic animals. Acta Vet Beograd 57:369–379

    Google Scholar 

  • Ishida H, Ishida Y, Kurosaka Y, Otani T, Sato K, Kobayashi H (1998) In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob Agents Chemother 42:1641–1645

    PubMed  CAS  Google Scholar 

  • Jacoby GA, Han P (1996) Detection of extended-spectrum beta-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 34:908–911

    PubMed  CAS  Google Scholar 

  • Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC (2006) qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother 50:1178–1182

    PubMed  CAS  Google Scholar 

  • Jang SS, Hansen LM, Breher JE, Riley DA, Magdesian KG, Madigan JE, Tang YJ, Silva J, Hirsh DC (1997) Antimicrobial susceptibilities of equine isolates of Clostridium difficile and molecular characterization of metronidazole-resistant strains. Clin Infect Dis 25:S266–S267

    PubMed  CAS  Google Scholar 

  • Jevons MP, Rolinson GN, Knox R (1961) Celbenin-resistant staphylococci. Br Med J 1:124

    Google Scholar 

  • Jiang Y, Zhou ZH, Qian Y, Wei ZQ, Yu YS, Hu SN, Li LJ (2008) Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in China. J Antimicrob Chemother 61:1003–1006

    PubMed  CAS  Google Scholar 

  • Kajiura T, Wada H, Ito K, Anzai Y, Kato F (2006) Conjugative plasmid transfer in the biofilm formed by Enterococcus faecalis. J Health Sci 52:358–367

    CAS  Google Scholar 

  • Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N (2006) Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother 58:665–668

    PubMed  CAS  Google Scholar 

  • Kather EJ, Marks SL, Foley JE (2006) Determination of the prevalence of antimicrobial resistance genes in canine Clostridium perfringens isolates. Vet Microbiol 113:97–101

    PubMed  CAS  Google Scholar 

  • Kim J, Jeong JH, Cha HY, Jin JS, Lee JC, Lee YC, Seol SY, Cho DT (2007) Detection of diverse SCCmec variants in methicillin-resistant Staphylococcus aureus and comparison of SCCmec typing methods. Clin Microbiol Infect 13:1128–1130

    PubMed  CAS  Google Scholar 

  • Kizerwetter-Swida M, Chrobak D, Rzewuska M, Binek M (2009) Antibiotic resistance patterns and occurrence of mecA gene in Staphylococcus intermedius strains of canine origin. Pol J Vet Sci 12:9–13

    PubMed  CAS  Google Scholar 

  • Klevens RM, Edwards JR, Tenover FC, McDonald LC, Horan T, Gaynes R (2006) Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis 42:389–391

    PubMed  Google Scholar 

  • Kliebe C, Nies BA, Meyer JF, Tolxdorffneutzling RM, Wiedemann B (1985) Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 28:302–307

    PubMed  CAS  Google Scholar 

  • Kotra LP, Haddad J, Mobashery S (2000) Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother 44:3249–3256

    PubMed  CAS  Google Scholar 

  • Kuhl SA, Pattee PA, Baldwin JN (1978) Chromosomal map location of methicillin resistance determinant in Staphylococcus aureus. J Bacteriol 135:460–465

    PubMed  CAS  Google Scholar 

  • Kuo HC, Chou CC, Tu C, Gong SR, Han CL, Liao JW, Chang SK (2009) Characterization of plasmid-mediated quinolone resistance by the qnrS gene in Escherichia coli isolated from healthy chickens and pigs. Vet Med 54:473–482

    CAS  Google Scholar 

  • Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74:7376–7382

    PubMed  CAS  Google Scholar 

  • Lavigne JP, Marchandin H, Delmas J, Bouziges N, Lecaillon E, Cavalie L, Jean-Pierre H, Bonnet R, Sotto A (2006) qnrA in CTX-M-producing Escherichia coli isolates from France. Antimicrob Agents Chemother 50:4224–4228

    PubMed  CAS  Google Scholar 

  • Leclercq R, Courvalin P (1991) Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob Agents Chemother 35:1267–1272

    PubMed  CAS  Google Scholar 

  • Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161

    PubMed  CAS  Google Scholar 

  • Lederberg J, Lederberg EM (1952) Replica plating and indirect selection of bacterial mutants. J Bacteriol 63:399–406

    PubMed  CAS  Google Scholar 

  • Leiros HKS, Kozielski-Stuhrmann S, Kapp U, Terradot L, Leonard GA, McSweeney SM (2004) Structural basis of 5-nitroimidazole antibiotic resistance – the crystal structure of NimA from Deinococcus radiodurans. J Biol Chem 279:55840–55849

    PubMed  CAS  Google Scholar 

  • Leverstein-van Hall MA, Blok HEM, Donders ART, Paauw A, Fluit AC, Verhoef J (2003) Multidrug resistance among Enterobacteriaceae is strongly associated with the presence of integrons and is independent of species or isolate origin. J Infect Dis 187:251–259

    PubMed  CAS  Google Scholar 

  • Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    PubMed  CAS  Google Scholar 

  • Liebana E, Gibbs M, Clouting C, Barker L, Clifton-Hadley FA, Pleydell E, Abdalhamid B, Hanson ND, Martin L, Poppe C, Davies RH (2004) Characterization of beta-lactamases responsible for resistance to extended-spectrum cephalosporins in Escherichia coli and Salmonella enterica strains from food-producing animals in the United Kingdom. Microb Drug Resist 10:1–9

    PubMed  CAS  Google Scholar 

  • Liebana E, Batchelor M, Hopkins KL, Clifton-Hadley FA, Teale CJ, Foster A, Barker L, Threlfall EJ, Davies RH (2006) Longitudinal farm study of extended-spectrum beta-lactamase-mediated resistance. J Clin Microbiol 44:1630–1634

    PubMed  CAS  Google Scholar 

  • Livermore DM (2003) Bacterial resistance: origins, epidemiology, and impact. Clin Infect Dis 36:S11–S23

    PubMed  CAS  Google Scholar 

  • Loeffler A, Boag AK, Sung J, Lindsay JA, Guardabassi L, Dalsgaard A, Smith H, Stevens KB, Lloyd DH (2005) Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J Antimicrob Chemother 56:692–697

    PubMed  CAS  Google Scholar 

  • Luethje P, Schwarz S (2007) Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program Bff-GermVet. Int J Antimicrob Agents 29:528–535

    CAS  Google Scholar 

  • Machado E, Coque TM, Canton R, Baquero F, Sousa JC, Peixe L, Portuguese Resistance Study Group (2006) Dissemination in Portugal of CTX-M-15-, OYA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6′)-Ib-cr gene, which encodes an aminoglycoside- and fluoroquinolone-modifying enzyme. Antimicrob Agents Chemother 50:3220–3220

    PubMed  CAS  Google Scholar 

  • Malik S, Christensen H, Peng H, Barton MD (2007) Presence and diversity of the beta-lactamase gene in cat and dog staphylococci. Vet Microbiol 123:162–168

    PubMed  CAS  Google Scholar 

  • Mangalappalli-Illathu AK, Lawrence JR, Swerhone GDW, Korber DR (2008) Architectural adaptation and protein expression patterns of Salmonella enterica serovar Enteritidis biofilms under laminar flow conditions. Int J Food Microbiol 123:109–120

    PubMed  CAS  Google Scholar 

  • Martinez-Martinez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351:797–799

    PubMed  CAS  Google Scholar 

  • Martínez-Martínez L, Pascual A, García I, Tran JH, Jacoby GA (2003) Interaction of plasmid and host quinolone resistance. J Antimicrob Chemother 51:1037–1039

    PubMed  Google Scholar 

  • Matsumoto Y, Ikeda F, Kamimura T, Yokota Y, Mine Y (1988) Novel plasmid-mediated 3-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob Agents Chemother 32:1243–1246

    PubMed  CAS  Google Scholar 

  • Matthews DA, Bolin JT, Burridge JM, Filman DJ, Volz KW, Kraut J (1985) Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. J Biol Chem 260:392–399

    PubMed  CAS  Google Scholar 

  • May T, Ito A, Okabe S (2009) Induction of multidrug resistance mechanism in Escherichia coli biofilms by interplay between tetracycline and ampicillin resistance genes. Antimicrob Agents Chemother 53:4628–4639

    PubMed  CAS  Google Scholar 

  • McKay KA, Ruhnke HL, Barnum DA (1965) The results of sensitivity tests on animal pathogens conducted over the period 1956–1963. Can Vet J 6:103–111

    PubMed  CAS  Google Scholar 

  • Monzon M, Oteiza C, Leiva J, Lamata M, Amorena B (2002) Biofilm testing of Staphylococcus epidermidis clinical isolates: low performance of vancomycin in relation to other antibiotics. Diagn Microbiol Infect Dis 44:319–324

    PubMed  CAS  Google Scholar 

  • Moura I, Radhouani H, Torres C, Poeta P, Igrejas G (2010) Detection and genetic characterisation of vanA-containing Enterococcus strains in healthy Lusitano horses. Equine Vet J 42:181–183

    PubMed  CAS  Google Scholar 

  • Naseer U, Haldorsen B, Tofteland S, Hegstad K, Scheutz F, Simonsen GS, Sundsfjord A, Norwegian ESG (2009) Molecular characterization of CTX-M-15-producing clinical isolates of Escherichia coli reveals the spread of multidrug-resistant ST131 (O25:H4) and ST964 (O102:H6) strains in Norway. APMIS 117:526–536

    PubMed  CAS  Google Scholar 

  • Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Canica MM, Park YJ, Lavigne JP, Pitout J, Johnson JR (2008) Intercontinental emergence of Escherichia coli clone O25: H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61:273–281

    PubMed  CAS  Google Scholar 

  • Nordmann P, Poirel L (2005) Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 56:463–469

    PubMed  CAS  Google Scholar 

  • Ogeer-Gyles JS, Mathews KA, Boerlin P (2006) Nosocomial infections and antimicrobial resistance in critical care medicine. J Vet Emerg Crit Care 16:1–18

    Google Scholar 

  • Oliver A, Canton R, Campo P, Baquero F, Blazquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253

    PubMed  CAS  Google Scholar 

  • Oliver A, Perez-Diaz JC, Coque TM, Baquero F, Canton R (2001) Nucleotide sequence and characterization of a novel cefotaxime-hydrolyzing beta-lactamase (CTX-M-10) isolated in Spain. Antimicrob Agents Chemother 45:616–620

    PubMed  CAS  Google Scholar 

  • Ossiprandi MC, Bottarelli E, Cattabiani F, Bianchi E (2008) Susceptibility to vancomycin and other antibiotics of 165 Enterococcus strains isolated from dogs in Italy. Comp Immunol Microbiol Infect Dis 31:1–9

    PubMed  Google Scholar 

  • Owen MR, Moores AP, Coe RJ (2004) Management of MRSA septic arthritis in a dog using a gentamicin-impregnated collagen sponge. J Small Anim Pract 45:609–612

    PubMed  CAS  Google Scholar 

  • Paladino JA, Sunderlin JL, Price CS, Schentag JJ (2002) Economic consequences of antimicrobial resistance. Surg Infect (Larchmt) 3:259–267

    Google Scholar 

  • Papanicolaou GA, Medeiros AA, Jacoby GA (1990) Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and a-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 34:2200–2209

    PubMed  CAS  Google Scholar 

  • Perichon B, Courvalin P, Galimand M (2007) Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 51:2464–2469

    PubMed  CAS  Google Scholar 

  • Perreten V, Kadlec K, Schwarz S, Andersson UG, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L (2010) Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother 65:1145–1154

    PubMed  CAS  Google Scholar 

  • Pitout JDD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8:159–166

    PubMed  CAS  Google Scholar 

  • Poeta P, Costa D, Rodrigues J, Torres C (2005) Study of faecal colonization by vanA-containing Enterococcus strains in healthy humans, pets, poultry and wild animals in Portugal. J Antimicrob Chemother 55:278–280

    PubMed  CAS  Google Scholar 

  • Pomba C, da Fonseca JD, Baptista BC, Correia JD, Martinez-Martinez L (2009) Detection of the pandemic O25-ST131 human virulent Escherichia coli CTX-M-15-producing clone harboring the qnrB2 and aac(6′)-Ib-cr genes in a dog. Antimicrob Agents Chemother 53:327–328

    PubMed  CAS  Google Scholar 

  • Pyorala S, Taponen S (2009) Coagulase-negative staphylococci-emerging mastitis pathogens. Vet Microbiol 134:3–8

    PubMed  CAS  Google Scholar 

  • Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44:3357–3363

    PubMed  CAS  Google Scholar 

  • Ramsay JWA, Garnham AJ, Mulhall AB, Crow RA, Bryan JM, Eardley I, Vale JA, Whitfield HN (1989) Biofilms, bacteria and bladder catheters. A clinical study. Br J Urol 64:395–398

    PubMed  CAS  Google Scholar 

  • Rankin SC, Whichard JM, Joyce K, Stephens L, O’Shea K, Aceto H, Munro DS, Benson CE (2005) Detection of a bla(SHV) extended-spectrum beta-lactamase in Salmonella enterica serovar Newport MDR-AmpC. J Clin Microbiol 43:5792–5793

    PubMed  CAS  Google Scholar 

  • Reece RJ, Maxwell A, Wang JC (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26:335–375

    PubMed  CAS  Google Scholar 

  • Rice EW, Boczek LA, Johnson CH, Messer JW (2003) Detection of intrinsic vancomycin resistant enterococci in animal and human feces. Diagn Microbiol Infect Dis 46:155–158

    PubMed  CAS  Google Scholar 

  • Riesen A, Perreten V (2009) Antibiotic resistance and genetic diversity in Staphylococcus aureus from slaughter pigs in Switzerland. Schweiz Arch Tierheilkd 151:425–431

    PubMed  CAS  Google Scholar 

  • Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24

    PubMed  CAS  Google Scholar 

  • Roberts MC (2005) Update on acquired tetracycline resistance genes. FEMS Microbiol Lett 245:195–203

    PubMed  CAS  Google Scholar 

  • Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830

    PubMed  CAS  Google Scholar 

  • Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88

    PubMed  CAS  Google Scholar 

  • Rossolini GM, Mantengoli E, Montagnani F, Pollini S (2010) Epidemiology and clinical relevance of microbial resistance determinants versus anti-Gram-positive agents. Curr Opin Microbiol 13:582–588

    PubMed  CAS  Google Scholar 

  • Roupas A, Pitton JS (1974) R factor-mediated and chromosomal resistance to ampicillin in Escherichia coli. Antimicrob Agents Chemother 5:186–191

    PubMed  CAS  Google Scholar 

  • Ruiz J (2003) Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J Antimicrob Chemother 51:1109–1117

    PubMed  CAS  Google Scholar 

  • Saenz Y, Zarazaga M, Brinas L, Lantero M, Ruiz-Larrea F, Torres C (2001) Antibiotic resistance in Escherichia coli isolates obtained from animals, foods and humans in Spain. Int J Antimicrob Agents 18:353–358

    PubMed  CAS  Google Scholar 

  • Saenz Y, Brinas L, Dominguez E, Ruiz J, Zarazaga M, Vila J, Torres C (2004) Mechanisms of resistance in multiple-antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob Agents Chemother 48:3996–4001

    PubMed  CAS  Google Scholar 

  • Sailer FC, Meberg BM, Young KD (2003) Beta-lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett 226:245–249

    PubMed  CAS  Google Scholar 

  • Sanders CC (1987) Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics. Annu Rev Microbiol 41:573–593

    PubMed  CAS  Google Scholar 

  • Sanders WE, Sanders CC (1988) Inducible beta-lactamases: clinical and epidemiologic implications for use of newer cephalosporins. Rev Infect Dis 10:830–838

    PubMed  Google Scholar 

  • Sanders CC, Bradford PA, Ehrhardt AF, Bush K, Young KD, Henderson TA, Sanders EW (1997) Penicillin-binding proteins and induction of AmpC beta-lactamase. Antimicrob Agents Chemother 41:2013–2015

    PubMed  CAS  Google Scholar 

  • Saroglou G, Cromer M, Bisno AL (1980) Methicillin-resistant Staphylococcus aureus – interstate spread of nosocomial infections with emergence of gentamicin–methicillin resistant strains. Infect Control Hosp Epidemiol 1:81–89

    CAS  Google Scholar 

  • Schnellmann C, Gerber V, Rossano A, Jaquier V, Panchaud Y, Doherr MG, Thomann A, Straub R, Perreten V (2006) Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. isolated from the skin of horses before and after clinic admission. J Clin Microbiol 44:4444–4454

    PubMed  CAS  Google Scholar 

  • Schwarz S, Kadlec K, Strommenger B (2008) Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius detected in the BfT-GermVet monitoring programme 2004–2006 in Germany. J Antimicrob Chemother 61:282–285

    PubMed  CAS  Google Scholar 

  • Seo MR, Park YS, Pai H (2010) Characteristics of plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Chemotherapy 56:46–53

    PubMed  CAS  Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular-genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    PubMed  CAS  Google Scholar 

  • Sheehan E, McKenna J, Mulhall KJ, Marks P, McCormack D (2004) Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. J Orthop Res 22:39–43

    PubMed  CAS  Google Scholar 

  • Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43:340–345

    PubMed  CAS  Google Scholar 

  • Sidjabat HE, Hanson ND, Smith-Moland E, Bell JM, Gibson JS, Filippich LJ, Trott DJ (2007) Identification of plasmid-mediated extended-spectrum and AmpC beta-lactamases in Enterobacter spp. isolated from dogs. J Med Microbiol 56:426–434

    PubMed  CAS  Google Scholar 

  • Singh R, Ray P, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958

    PubMed  CAS  Google Scholar 

  • Skinner S, Inglis B, Matthews PR, Stewart PR (1988) Mercury and tetracycline resistance genes and flanking repeats associated with methicillin resistance on the chromosome of Staphylococcus aureus. Mol Microbiol 2:289–292

    PubMed  CAS  Google Scholar 

  • Smith MM, Vasseur PB, Saunders HM (1989) Bacterial growth associated with metallic implants in dogs. J Am Vet Med Assoc 195:765–767

    PubMed  CAS  Google Scholar 

  • Sternberg C, Christensen BB, Johansen T, Toftgaard Nielsen A, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117

    PubMed  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    PubMed  CAS  Google Scholar 

  • Stone G, Wood P, Dixon L, Keyhan M, Matin A (2002) Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms. Antimicrob Agents Chemother 46:2458–2461

    PubMed  CAS  Google Scholar 

  • Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22:664-

    PubMed  CAS  Google Scholar 

  • Suzuki S, Shibata N, Yamane K, Wachino J, Ito K, Arakawa Y (2009) Change in the prevalence of extended-spectrum-beta-lactamase-producing Escherichia coli in Japan by clonal spread. J Antimicrob Chemother 63:72–79

    PubMed  CAS  Google Scholar 

  • Towner KJ, Brennan A, Zhang Y, Holtham CA, Brough JL, Carter GI (1994) Genetic structures associated with spread of the type IA trimethoprim-resistant dihydrofolate-reductase gene amongst Escherichia coli strains isolated in the Nottingham area of the United-Kingdom. J Antimicrob Chemother 33:25–32

    PubMed  CAS  Google Scholar 

  • Tran Van Nhieu G, Bordon F, Collatz E (1992) Incidence of an aminoglycoside 6′-N-acetyltransferase, ACC(6′)-1b, in amikacin-resistant clinical isolates of Gram-negative bacilli, as determined by DNA–DNA hybridisation and immunoblotting. J Med Microbiol 36:83–88

    PubMed  CAS  Google Scholar 

  • Tran JH, Jacoby GA (2002) Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci USA 99:5638–5642

    PubMed  CAS  Google Scholar 

  • Tran JH, Jacoby GA, Hooper DC (2005) Interaction of the plasmid-encoded quinolone resistance protein Qnr with Escherichia coli DNA gyrase. Antimicrob Agents Chemother 49:118–125

    PubMed  CAS  Google Scholar 

  • Tuckman M, Petersen PJ, Howe AYM, Orlowski M, Mullen S, Chan K, Bradford PA, Jones CH (2007) Occurrence of tetracycline resistance genes among Escherichia coli isolates from the phase 3 clinical trials for tigecycline. Antimicrob Agents Chemother 51:3205–3211

    PubMed  CAS  Google Scholar 

  • Tupin A, Gualtieri M, Roquet-Baneres F, Morichaud Z, Brodolin K, Leonetti JP (2010) Resistance to rifampicin: at the crossroads between ecological, genomic and medical concerns. Int J Antimicrob Agents 35:519–523

    PubMed  CAS  Google Scholar 

  • Turkyilmaz S, Erdem V, Bozdogan B (2010) Investigation of antimicrobial susceptibility for enterococci isolated from cats and dogs and the determination of resistance genes by polymerase chain reaction. Turk J Vet Anim Sci 34:61–68

    CAS  Google Scholar 

  • Tzouvelekis LS, Tzelepi E, Tassios PT, Legakis NJ (2000) CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 14:137–142

    PubMed  CAS  Google Scholar 

  • van Duijkeren E, Vulto AG, Vanmiert A (1994) Trimethoprim sulfonamide combinations in the horse – a review. J Vet Pharmacol Ther 17:64–73

    PubMed  Google Scholar 

  • van Duijkeren E, Moleman M, van Oldruitenborgh-Oosterbaan MMS, Multem J, Troelstra A, Fluit AC, van Wamel WJB, Houwers DJ, de Neeling AJ, Wagenaar JA (2010) Methicillin-resistant Staphylococcus aureus in horses and horse personnel: an investigation of several outbreaks. Vet Microbiol 141:96–102

    PubMed  Google Scholar 

  • Vanni M, Tognetti R, Pretti C, Crema F, Soldani G, Meucci V, Intorre L (2009) Antimicrobial susceptibility of Staphylococcus intermedius and Staphylococcus schleiferi isolated from dogs. Res Vet Sci 87:192–195

    PubMed  CAS  Google Scholar 

  • Vengust M, Anderson MEC, Rousseau J, Weese JS (2006) Methicillin-resistant staphylococcal colonization in clinically normal dogs and horses in the community. Lett Appl Microbiol 43:602–606

    PubMed  CAS  Google Scholar 

  • VMD (2009) Sales of antimicrobial products used as veterinary medicines, growth promoters and coccidiostats in the UK in 2008. http://www.vmd.gov.uk/Publications/Antibiotic/salesanti08.pdf, Accessed November 2010

  • Vo ATT, van Duijkeren E, Fluit AC, Gaastra W (2007) Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from horses. Vet Microbiol 124:248–255

    PubMed  CAS  Google Scholar 

  • Waksman SA, Reilly HC, Schatz A (1945) Strain specificity and production of antibiotic substances: V. Strain resistance of bacteria to antibiotic substances, especially to streptomycin. Proc Natl Acad Sci USA 31:157–164

    PubMed  CAS  Google Scholar 

  • Wang MH, Guo QL, Xu XG, Wang XY, Ye XY, Wu S, Hooper DC, Wang MG (2009) New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother 53:1892–1897

    PubMed  CAS  Google Scholar 

  • Weese J, van Duijkeren E (2010) Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine. Vet Microbiol 140:418–429

    PubMed  CAS  Google Scholar 

  • Weese JS, Rousseau J, Traub-Dargatz JL, Willey BM, McGeer AJ, Low DE (2005) Community-associated methicillin-resistant Staphylococcus aureus in horses and humans who work with horses. J Am Vet Med Assoc 226:580–583

    PubMed  Google Scholar 

  • Weigel LM, Donlan RM, Shin DH, Jensen B, Clark NC, McDougal LK, Zhu WM, Musser KA, Thompson J, Kohlerschinidt D, Dumas N, Limberger RJ, Patel JB (2007) High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51:231–238

    PubMed  CAS  Google Scholar 

  • Weisblum B (1995) Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother 39:797–805

    PubMed  CAS  Google Scholar 

  • White PA, Rawlinson WD (2001) Current status of the aadA and dfr gene cassette families. J Antimicrob Chemother 47:495–496

    PubMed  CAS  Google Scholar 

  • White PA, McIver CJ, Deng YM, Rawlinson WD (2000) Characterisation of two new gene cassettes, aadA5 and dfrA17. FEMS Microbiol Lett 182:265–269

    PubMed  CAS  Google Scholar 

  • WHO (2007) Critically important antimicrobials for human medicine. In: Report of the second WHO expert meeting, Copenhagen, 29–31 May 2007

    Google Scholar 

  • Wimpenny J, Manz W, Szewzyk U (2000) Heterogeneity in biofilms. FEMS Microbiol Rev 24:661–671

    PubMed  CAS  Google Scholar 

  • Woodford N, Johnson AP, Morrison D, Speller DCE (1995) Current perspectives on glycopeptide resistance. Clin Microbiol Rev 8:585–615

    PubMed  CAS  Google Scholar 

  • Woodford N, Carattoli A, Karisik E, Underwood A, Ellington MJ, Livermore DM (2009) Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob Agents Chemother 53:4472–4482

    PubMed  CAS  Google Scholar 

  • Wright GD (2007) The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5:175–186

    PubMed  CAS  Google Scholar 

  • Yamane K, Wachino JI, Suzuki S, Kimura K, Shibata N, Kato H, Shibayama K, Konda T, Arakawa Y (2007) New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 51:3354–3360

    PubMed  CAS  Google Scholar 

  • Yan J, Wu J, Ko W, Tsai S, Chuang C, Wu H, Lu Y, Li J (2004) Plasmid-mediated 16S rRNA methylases conferring high-level aminoglycoside resistance in Escherichia coli and Klebsiella pneumoniae isolates from two Taiwanese hospitals. J Antimicrob Chemother 54:1007–1012

    PubMed  CAS  Google Scholar 

  • Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Maddox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maddox, T.W. (2011). Biofilms and Antimicrobial Resistance in Companion Animals. In: Percival, S., Knottenbelt, D., Cochrane, C. (eds) Biofilms and Veterinary Medicine. Springer Series on Biofilms, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21289-5_10

Download citation

Publish with us

Policies and ethics