Skip to main content

Gene Regulatory Network Properties Linked to Gene Expression Dynamics in Spatially Extended Systems

  • Conference paper
Advances in Artificial Life. Darwin Meets von Neumann (ECAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5777))

Included in the following conference series:

  • 1270 Accesses

Abstract

Gene expression levels within a cell are determined by the network of regulatory interactions among genes. In spatially extended systems of multiple cells, gene expression levels are also affected by activity in neighbouring cells. This interplay of a genetic regulatory network and interactions among neighbouring cells may qualitatively alter the dynamics of gene expression and is at the core of biological pattern formation.

In this study, we investigate the effects of the topology of a regulatory network on its pattern formation potential. We score networks by comparing the heterogeneity of gene expression levels generated on a lattice to that of the levels generated in a well stirred reactor as a null model, and assess the correlation of this score to characteristics of topology, such as density or centrality measures.

Density is strongly correlated to the potential to generate gene expression heterogeneity. For some networks that produce high heterogeneity on lattices, centrality and membership in cycles are indicative of the impact which deleting a gene has on the level of heterogeneity produced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, USA (2002), ISBN: 0815340729

    Google Scholar 

  2. Kauffman, S.A.: Developmental logic and its evolution. Bioessays 6(2), 82–87 (1987)

    Article  Google Scholar 

  3. Barabási, A.L., Oltvai, Z.N.: Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics 5(2), 101–113 (2004)

    Article  Google Scholar 

  4. Albert, R., Barabási, A.L.: The statistical mechanics of complex networks. Reviews of Modern Physics 74, 47–97 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Thomas, R.: Logical analysis of systems comprising feedback loops. Journal of Theoretical Biology 73(4), 631–656 (1978)

    Article  Google Scholar 

  6. Soulé, C.: Graphic requirements for multistationarity. ComPlexUs 1(3), 123–133 (2003)

    Article  Google Scholar 

  7. Boerlijst, M.C., Hogeweg, P.: Attractors and spatial patterns in hypercycles with negative interactions. Journal of Theoretical Biology 176(2), 199–210 (1995)

    Article  Google Scholar 

  8. Bignone, F.A.: Cells-gene interactions simulation on a coupled map lattice. Journal of Theoretical Biology 161(2), 231–249 (1993)

    Article  Google Scholar 

  9. Keränen, S.V.E.: Simulation study on effects of signalling network structure on the developmental increase in complexity. Journal of Theoretical Biology 231(1), 3–21 (2004)

    Article  MathSciNet  Google Scholar 

  10. Maynard Smith, J.: The, Crafoord Prize Lectures. The idea of information in biology. The Quarterly Review of Biology 74(4), 395–400 (1999)

    Article  Google Scholar 

  11. Koschützki, D., Schreiber, F.: Comparison of centralities for biological networks. In: Giegerich, R., Stoye, J. (eds.) Proceedings of the German Conference on Bioinformatics (GCB 2004). LNI, vol. P-53, pp. 199–206 (2004)

    Google Scholar 

  12. Kim, J.T.: transsys: A generic formalism for modeling regulatory networks in morphogenesis. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 242–251. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Kim, J.T.: The transsys home page (2009), http://www.transsys.net/

  14. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  16. Csárdi, G., Népusz, T.: The igraph software package for complex network research. Inter. Journal Complex Systems, 1695 (2006)

    Google Scholar 

  17. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouyioukos, C., Kim, J.T. (2011). Gene Regulatory Network Properties Linked to Gene Expression Dynamics in Spatially Extended Systems. In: Kampis, G., Karsai, I., Szathmáry, E. (eds) Advances in Artificial Life. Darwin Meets von Neumann. ECAL 2009. Lecture Notes in Computer Science(), vol 5777. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21283-3_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21283-3_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21282-6

  • Online ISBN: 978-3-642-21283-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics