Skip to main content

Towards a Characterisation of the Generalised Cladistic Character Compatibility Problem for Non-branching Character Trees

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Included in the following conference series:

Abstract

In [3,2], the authors introduced the Generalised Cladistic Character Compatibility (GCCC) Problem which generalises a variant of the Perfect Phylogeny Problem in order to model better experiments in molecular biology showing that genes contain information for currently unexpressed traits, e.g., having teeth. In [3], the authors show that this problem is NP-complete and give some special cases which are polynomial. The authors also pose an open case of this problem where each character has only one generalised state, and each character tree is non-branching, a case that models these experiments particularly closely, which we call the Benham-Kannan-Warnow (BKW) Case.

In [18], the authors study the complexity of a set of cases of the GCCC Problem for non-branching character trees when the phylogeny tree that is a solution to this compatibility problem is restricted to be either a tree, path or single-branch tree. In particular, they show that if the phylogeny tree must have only one branch, the BKW Case is polynomial-time solvable, by giving a novel algorithm based on PQ-trees used for the consecutive-ones property of binary matrices.

In this work, we characterise the complexity of the remainder of the cases considered in [18] for the single-branch tree and the path. We show that some of the open cases are polynomial-time solvable, one by using an algorithm based on directed paths in the character trees similar to the algorithm in [2], and the second by showing that this case can be reduced to a polynomial-time solvable case of [18]. On the other hand, we will show that other open cases are NP-complete using an interesting variation of the ordering problems we study here. In particular, we show that the BKW Case for the path is NP-complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwala, R., Fernandez-Baca, D.: A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM J. Computing 26(6), 1216–1224 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benham, C., Kannan, S., Paterson, M., Warnow, T.: Hen’s teeth and whale’s feet: Generalized characters and their compatibility. J. Computational Biology 2(4), 515–525 (1995)

    Article  Google Scholar 

  3. Benham, C., Kannan, S., Warnow, T.: Of chicken teeth and mouse eyes, or generalized character compatibility. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp. 17–26. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Bodlaender, H., Fellows, M., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)

    Chapter  Google Scholar 

  5. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Computer and System Sciences 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Estabrook, G., McMorris, F.: When is one estimate of evolutionary relationships a refinement of the another? J. Mathematical Biology 10, 327–373 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. Felsenstein, J.: Numerical methods for inferring evolutionary trees. The Quarterly Review of Biology 57(4), 379–404 (1982)

    Article  Google Scholar 

  8. Figuera, L., Pandolfo, M., Dunne, P., Cantu, J., Patel, P.: Mapping the congenital generalized hypertrichosis locus to chromosome Xq24-q27.1. Nature 10, 202–207 (1995)

    Google Scholar 

  9. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pacific J. Mathematics 15, 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Gramm, J., Nierhoff, T., Sharan, R., Tantau, T.: Haplotyping with missing data via perfect path phylogenies. Discrete Applied Mathematics 155, 788–805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gusfield, D.: Efficient algorithms for inferring evolutionary trees. Networks 21, 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gusfield, D.: The multi-state perfect phylogeny problem with missing and removable data: Solutions via integer-programming and chordal graph theory. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 236–252. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Janis, C.: The sabertooth’s repeat performances. Natural History 103, 78–82 (1994)

    Google Scholar 

  15. Kannan, S., Warnow, T.: Inferring evolutionary history from DNA sequences. SIAM J. Computing 23(4), 713–737 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kannan, S., Warnow, T.: A fast algorithm for the computation and enumeration of perfect phylogenies. In: Proc. of SODA 1995, pp. 595–603 (1995)

    Google Scholar 

  17. Kollar, E., Fisher, C.: Tooth induction in chick epithelium: Expression of quiescent genes for enamel synthesis. Science 207, 993–995 (1980)

    Article  Google Scholar 

  18. Maňuch, J., Patterson, M., Gupta, A.: On the Generalised Character Compatibility Problem for Non-branching Character Trees. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 268–276. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. McMorris, F., Warnow, T., Wimer, T.: Triangulating vertex colored graphs. SIAM J. Discrete Mathematics 7(2), 296–306 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discrete Applied Mathematics 155, 788–805 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Opatrny, J.: Total ordering problem. SIAM J. Computing 8(1), 111–114 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pe’er, I., Pupko, T., Shamir, R., Sharan, R.: Incomplete directed perfect phylogeny. SIAM J. Computing 33, 590–607 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. Classification 9, 91–116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Trowsdale, J.: Genomic structure and function in the MHC. Trends in Genetics 9, 117–122 (1993)

    Article  Google Scholar 

  25. Warnow, T.: Tree compatibility and inferring evolutionary history. J. Algorithms 16, 388–407 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maňuch, J., Patterson, M., Gupta, A. (2011). Towards a Characterisation of the Generalised Cladistic Character Compatibility Problem for Non-branching Character Trees. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics