Skip to main content

Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies among Extant Genomes

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6674))

Abstract

Based on the gene order of four core eudicot genomes (cacao, castor bean, papaya and grapevine) that have escaped any recent whole genome duplication (WGD) events, and two others (poplar and cucumber) that descend from independent WGDs, we infer the ancestral gene order of the rosid clade and those of its main subgroups, the fabids and malvids. We use the gene order evidence to evaluate the hypothesis that the order Malpighiales belongs to the malvids rather than as traditionally assigned to the fabids. Our input data are pairwise synteny blocks derived from all 15 pairs of genomes. Our method involves the heuristic solutions of two hard combinatorial optimization problems, neither of which invokes any arbitrary thresholds, weights or other parameters. The first problem, based on the conflation of the pairwise syntenies, is the inference of disjoint sets of orthologous genes, at most one copy for each genome, and the second problem is the inference of the gene order at all ancestors simultaneously, minimizing the total number of genomic rearrangements over a given phylogeny.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lyons, E., et al.: Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar and grape: CoGe with rosids. Plant Phys. 148, 1772–1781 (2008)

    Article  Google Scholar 

  2. Tang, H., et al.: Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res. 18, 1944–1954 (2008)

    Article  Google Scholar 

  3. Murphy, W.J., et al.: Dynamics of mammalian chromosome evolution inferred from multispecies comparative maps. Science 309, 613–617 (2005)

    Article  Google Scholar 

  4. Ma, J., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006)

    Article  Google Scholar 

  5. Adam, Z., Sankoff, D.: The ABCs of MGR with DCJ. Evol. Bioinform. 4, 69–74 (2008)

    Google Scholar 

  6. Ouangraoua, A., Boyer, F., McPherson, A., Tannier, É., Chauve, C.: Prediction of Contiguous Regions in the Amniote Ancestral Genome. In: Salzberg, S.L., Warnow, T. (eds.) ISBRA 2009. LNCS, vol. 5542, pp. 173–185. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Gordon, J.L., Byrne, K.P., Wolfe, K.H.: Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome. PLoS Genet. 5, 1000485 (2009)

    Article  Google Scholar 

  8. Tannier, E.: Yeast ancestral genome reconstructions: The possibilities of computational methods. In: Ciccarelli, F.D., Miklós, I. (eds.) RECOMB-CG 2009. LNCS, vol. 5817, pp. 1–12. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Zheng, C.: Pathgroups, a dynamic data structure for genome reconstruction problems. Bioinformatics 26, 1587–1594 (2010)

    Article  Google Scholar 

  10. Zheng, C., Sankoff, D.: On the Pathgroups approach to rapid small phylogeny. BMC Bioinformatics 12(Suppl 1), S4 (2011)

    Article  Google Scholar 

  11. Bertrand, D., et al.: Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 78–89. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Soltis, D.E., et al.: Polyploidy and angiosperm diversification. Am. J. Bot. 96, 336–348 (2009)

    Article  Google Scholar 

  13. Burleigh, J.G., et al.: Locating large-scale gene duplication events through reconciled trees: implications for identifying ancient polyploidy events in plants. J. Comp. Biol. 16, 1071–1083 (2009)

    Article  MathSciNet  Google Scholar 

  14. Langham, R.A., et al.: Genomic duplication, fractionation and the origin of regulatory novelty. Genetics 166, 935–945 (2004)

    Article  Google Scholar 

  15. Thomas, B.C., Pedersen, B., Freeling, M.: Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res. 16, 934–946 (2006)

    Article  Google Scholar 

  16. Sankoff, D., Zheng, C., Zhu, Q.: The collapse of gene complement following whole genome duplication. BMC Genomics 11, 313 (2010)

    Article  Google Scholar 

  17. Lyons, E., Freeling, M.: How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J. 53, 661–673 (2008)

    Article  Google Scholar 

  18. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion, and block interchange. Bioinformatics 21, 3340–3346 (2005)

    Article  Google Scholar 

  19. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J. Comput. 32, 754–792 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Argout, X., et al.: The genome of Theobroma cacao. Nat. Genet. 43, 101–108 (2011)

    Article  Google Scholar 

  21. Chan, A.P., et al.: Draft genome sequence of the oilseed species Ricinus communis. Nat. Biotechnol. 28, 951–956 (2010)

    Article  Google Scholar 

  22. Haung, S., et al.: The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275–1281 (2010)

    Article  Google Scholar 

  23. Jaillon, O., et al.: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449, 463–467 (2007)

    Article  Google Scholar 

  24. Velasco, R., et al.: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2, e1326 (2007)

    Article  Google Scholar 

  25. Ming, R., et al.: The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452, 991–996 (2008)

    Article  Google Scholar 

  26. Tuskan, G.A., et al.: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604 (2006)

    Article  Google Scholar 

  27. Forest, F., Chase, M.W.: Eudicots. In: Hedges, S.B., Kumar, S. (eds.) The Timetree of Life, pp. 169–176. Oxford University Press, Oxford (2009)

    Google Scholar 

  28. Shulaev, V., et al.: The genome of woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, C., Sankoff, D. (2011). Gene Order in Rosid Phylogeny, Inferred from Pairwise Syntenies among Extant Genomes. In: Chen, J., Wang, J., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2011. Lecture Notes in Computer Science(), vol 6674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21260-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21260-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21259-8

  • Online ISBN: 978-3-642-21260-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics