Skip to main content

Magnetite Biomineralization in Bacteria

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 52))

Abstract

Magnetotactic bacteria are able to biomineralize magnetic crystals in intracellular organelles, so-called “magnetosomes.” These particles exhibit species- and strain-specific size and morphology. They are of great interest for biomimetic nanotechnological and biotechnological research due to their fine-tuned magnetic properties and because they challenge our understanding of the classical principles of crystallization. Magnetotactic bacteria use these highly optimized particles, which form chains within the bacterial cells, as a magnetic field actuator, enabling them to navigate. In this chapter, we discuss the current biological and chemical knowledge of magnetite biomineralization in these bacteria. We highlight the extraordinary properties of magnetosomes and some resulting potential applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amann R, Peplies J, Schüler D (2007) Diversity and taxonomy of magnetotactic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Amemiya Y, Tanaka T, Yoza B, Matsunaga T (2005) Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J Biotechnol 120:308–314

    PubMed  CAS  Google Scholar 

  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T (2007) Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomater 28:5381–5389

    CAS  Google Scholar 

  • Arakaki A, Webbs J, Matsunaga T (2003) A novel protein tightly bound to bacterial magnetite particles in Magnetospirillum magnetotacticum strain AMB-1. J Biol Chem 278:8745–8750

    PubMed  CAS  Google Scholar 

  • Balkwill D, Maratea D, Blakemore RP (1980) Ultrastructure of a magnetotactic spirillum. J Bacteriol 141:1399–1408

    PubMed  CAS  Google Scholar 

  • Bazylinski DA, Frankel RB (2004) Magnetosome formation in prokaryotes. Nat Rev Microbiol 2:217–230

    PubMed  CAS  Google Scholar 

  • Bellini S (2009a) Further studies on “magnetosensitive bacteria”. Chi J Oceanogr Limnol 27:6–12

    Google Scholar 

  • Bellini S (2009b) On a unique behavior of freshwater bacteria. Chi J Oceanogr Limnol 27:3–5

    Google Scholar 

  • Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379

    PubMed  CAS  Google Scholar 

  • Blakemore RP (1982) Magnetotactic bacteria. Ann Rev Microbiol 36:217–238

    CAS  Google Scholar 

  • Blakemore RP, Maratea D, Wolfe RS (1979) Isolation and pure culture of freshwater magnetic spirillum in chemically defined medium. J Bacteriol 140:720–729

    PubMed  CAS  Google Scholar 

  • Calugay RJ, Miyashita H, Okamura Y, Matsunaga T (2003) Siderophore production by the magnetic bacterium Magnetospirillum magneticum AMB-1. FEMS Microbiol Let 218:371–375

    CAS  Google Scholar 

  • Calugay RJ, Okamura Y, Wahyudi AT, Takeyama H, Matsunaga T (2004) Siderophore production of a periplasmic transport binding protein kinase gene defective mutant of Magnetospirillum magneticum AMB-1. Biochem Biophys Res Comm 323:852–857

    PubMed  CAS  Google Scholar 

  • Calugay RJ, Takeyama H, Mukoyama D, Fukuda Y, Suzuki T, Kanoh K, Matsunaga T (2006) Catechol siderophore excretion by magnetotactic bacterium Magnetospirillum magneticum AMB-1. J Biosci Bioeng 101:445–447

    PubMed  CAS  Google Scholar 

  • Cartron ML, Maddocks S, Gillingham P, Craven CJ, Andrews SC (2006) Feo – transport of ferrous iron into bacteria. Biometals 19:143–157

    PubMed  CAS  Google Scholar 

  • Ceyhan B, Alhorn P, Lang C, Schüler D, Niemeyer CM (2006) Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small 2:1251–1255

    PubMed  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The Iron Oxides. Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim

    Google Scholar 

  • de Nooijer LJ, Toyofuku T, Kitazato H (2009) Foraminifera promote calcification by elevating their intracellular pH. Proc Natl Acad Sci U S A 106:15374–15378

    PubMed  Google Scholar 

  • Devouard B, Pósfai M, Hua X, Bazylinski DA, Frankel RB, Buseck PR (1998) Magnetite from magnetotactic bacteria: Size distributions and twinning. Am Miner 83:1387–1398

    CAS  Google Scholar 

  • Dubbels BL, DiSpirito AA, Morton JD, Semrau JD, Neto JNE, Bazylinski DA (2004) Evidence for a copper-dependent iron transport system in the marine, magnetotactic bacterium strain MV-1. Microbiology 150:2931–2945

    PubMed  CAS  Google Scholar 

  • Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, Pósfai M, Buseck PR (1998) Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282:1868–1870

    PubMed  CAS  Google Scholar 

  • Dunlop DJ, Özdemir O (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Google Scholar 

  • Escolar L, Perez-Martin J, De Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the fur protein. J Bacteriol 181:6223–6229

    PubMed  CAS  Google Scholar 

  • Faivre D, Schüler D (2008) Magnetotactic bacteria and magnetosomes. Chem Rev 108:4875–4898

    PubMed  CAS  Google Scholar 

  • Faivre D, Agrinier P, Menguy N, Zuddas P, Pachana K, Gloter A, Laval J-Y, Guyot F (2004) Mineralogical and isotopic properties of inorganic nanocrystalline magnetites. Geochim Cosmochim Acta 68:4395–4403

    CAS  Google Scholar 

  • Faivre D, Böttger LH, Matzanke BF, Schüler D (2007) Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(II) species. Angew Chem Int Ed 46:8495–8499

    CAS  Google Scholar 

  • Faivre D, Menguy N, Pósfai M, Schüler D (2008) Effects of environmental parameters on the physical properties of fast-growing magnetosomes. Am Mineral 93:463–469

    CAS  Google Scholar 

  • Farina M, Esquivel DMS, Lins de Barros H (1990) Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343:256–258

    CAS  Google Scholar 

  • Fischer A, Schmitz M, Aichmayer B, Fratzl P, Faivre D (2011) Structural purity of magnetite nanoparticles in magnetotactic bacteria. J R Soc Interface 8:1011–1018

    Google Scholar 

  • Flies CB, Jonkers HM, de Beer D, Bosselmann K, Böttcher ME, Schüler D (2005) Diversity and vertical distribution of magnetotactic bacteria along chemical gradients in freshwater microcosms. FEMS Microbiol Ecol 52:185–195

    PubMed  CAS  Google Scholar 

  • Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54:95–114

    CAS  Google Scholar 

  • Frankel RB, Blakemore RP (1991) Iron Biominerals. Plenum Press, New York and London

    Google Scholar 

  • Frankel RB, Blakemore R, Wolfe RS (1979) Magnetite in freshwater magnetotactic bacteria. Science 203:1355–1356

    PubMed  CAS  Google Scholar 

  • Frankel RB, Papaefthymiou GC, Blakemore RP, O’Brien W (1983) Fe3O4 precipitation in magnetotactic bacteria. Biochim Biophys Acta 763:147–159

    CAS  Google Scholar 

  • Frankel RB, Bazylinski DA, Johnson MS, Taylor BL (1997) Magneto-aerotaxis in marine coccoid bacteria. Biophy J 73:994–1000

    CAS  Google Scholar 

  • Frankel RB, Williams TJ, Bazylinski DA (2007) Magneto-Aerotaxis. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Gorby YA, Beveridge TJ, Blakemore R (1988) Characterization of the bacterial magnetosome membrane. J Bacteriol 170:834–841

    PubMed  CAS  Google Scholar 

  • Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D (2004) Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Eviron Microbiol 70:1040–1050

    Google Scholar 

  • Heyen U, Schüler D (2003) Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 61:536–544

    PubMed  CAS  Google Scholar 

  • Isambert A, Menguy N, Larquet E, Guyot F, Valet J-P (2007) Transmission electron microscopy study of magnetites in a freshwater population of magnetotactic bacteria. Am Mineral 92:621–630

    CAS  Google Scholar 

  • Jogler C, Schüler D (2007) Genetic analysis of magnetosome biomineralization. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Jogler C, Schüler D (2009) Genomics, genetics, and cell biology of magnetosome formation. Annu Rev Microbiol 63:501–521

    PubMed  CAS  Google Scholar 

  • Jogler C, Kube M, Schübbe S, Ullrich S, Teeling H, Bazylinski DA, Reinhardt R, Schüler D (2009) Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 11:1267–1277

    PubMed  CAS  Google Scholar 

  • Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712

    PubMed  CAS  Google Scholar 

  • Keim CN, Lins U, Farina M (2009) Manganese in biogenic magnetite crystals from magnetotactic bacteria. FEMS Microbiol Lett 292:250–253

    PubMed  CAS  Google Scholar 

  • Komeili A (2007) Molecular mechanisms of magnetosome formation. Ann Rev Biochem 76:351–366

    PubMed  CAS  Google Scholar 

  • Komeili A, Vali H, Beveridge TJ, Newman D (2004) Magnetosome vesicles are present prior to magnetite formation and MamA is required for their activation. Proc Natl Acad Sci USA 101:3839–3844

    PubMed  CAS  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein mamK. Science 311:242–245

    PubMed  CAS  Google Scholar 

  • Kuhara M, Takeyama H, Tanaka T, Matsunaga T (2004) Magnetic cell separation using antibody binding with protein a expressed on bacterial magnetic particles. Anal Chem 76:6207–6213

    PubMed  CAS  Google Scholar 

  • Kundu S, Kale AA, Banpurkar AG, Kulkarni GR, Ogale SB (2009) On the change in bacterial size and magnetosome features for Magnetospirillum magnetotacticum (MS-1) under high concentrations of zinc and nickel. Biomater 30:4211–4218

    CAS  Google Scholar 

  • Lang C, Schüler D (2008) Expression of green fluorescent protein fused to magnetosome proteins in microaerophilic magnetotactic bacteria. Appl Environ Microbiol 74:4944–4953

    PubMed  CAS  Google Scholar 

  • Lang C, Schüler D, Faivre D (2007) Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes. Macromol Biosci 7:144–151

    PubMed  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    PubMed  CAS  Google Scholar 

  • Lins U, McCartney MR, Farina M, Frankel RB, Buseck PR (2005) Habits of magnetosome crystals in coccoid magnetotactic bacteria. Appl Environ Microbiol 71:4902–4905

    PubMed  CAS  Google Scholar 

  • Lisy MR, Hartung A, Lang C, Schüler D, Richter W, Reichenbach JR, Kaiser WA, Hilger I (2007) Fluorescent bacterial magnetic nanoparticles as bimodal contrast agents. Invest Radiol 42:235–241

    PubMed  CAS  Google Scholar 

  • Lowenstam HA (1967) Lepidocrocite an apatite mineral and magnetite in teeth of chitons (Polyplacophora). Science 156:1373–1375

    PubMed  CAS  Google Scholar 

  • Mann S, Sparks N, Blakemore R (1987a) Structure, morphology and crystal growth of anisotropic magnetite crystals in magnetotactic bacteria. Proc R Soc Lond B 231:477–487

    CAS  Google Scholar 

  • Mann S, Sparks N, Blakemore R (1987b) Ultrastructure and characterization of anisotropic magnetic inclusions in magnetotactic bacteria. Proc R Soc Lond B 231:469–476

    CAS  Google Scholar 

  • Mann S, Sparks NHC, Frankel RB, Bazlinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343:258–261

    CAS  Google Scholar 

  • Matsunaga T, Arakaki A (2007) Molecular bioengineering of bacterial magnetic particles for biotechnological applications. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Matsunaga T, Kamiya S (1987) Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol 26:328–332

    CAS  Google Scholar 

  • Matsunaga T, Sakaguchi T, Tadokoro F (1991) Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 35:651–655

    CAS  Google Scholar 

  • Matsunaga T, Nakamura C, Burgess JG, Sode K (1992) Gene transfer in magnetic bacteria: transposon mutagenesis and cloning of genomic DNA fragments required for magnetosome synthesis. J Bacteriol 174:2748–2753

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Togo H, Kikuchi T, Tanaka T (2000) Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp AMB-1. Biotechnol Bioeng 70:704–709

    PubMed  CAS  Google Scholar 

  • Matsunaga T, Ueki F, Obata K, Tajima H, Tanaka T, Takeyama H, Goda Y, Fujimoto S (2003) Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta 475:75–83

    CAS  Google Scholar 

  • Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y, Takeyama H (2005) Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp strain AMB-1. DNA Res 12:157–166

    PubMed  CAS  Google Scholar 

  • Muxworthy AR, Williams W (2006) Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes. J Geophys Res 111:B12S12

    Google Scholar 

  • Muxworthy AR, Williams W (2009) Critical superparamagnetic/single-domain grain sizes in interacting magnetite particles: implications for magnetosome crystals. J R Soc Interf 6:1207–1212

    Google Scholar 

  • Nakamura C, Sakaguchi T, Kudo S, Burgess JG, Sode K, Matsunaga T (1993) Characterization of Iron Uptake in the Mangetic Bacterium Aquaspirillum sp. AMB-1. Appl Biochem Biotechnol 39(40):169–176

    Google Scholar 

  • Nakamura C, Kikuchi T, Burgess JG, Matsunaga T (1995) Iron-regulated expression and membrane localization of the maga protein in magnetospirillum sp strain AMB-1. J Biochem 118:23–27

    PubMed  CAS  Google Scholar 

  • Nakazawa H, Arakaki A, Narita-Yamada S, Yashiro I, Jinno K, Aoki N, Tsuruyama A, Okamura Y, Tanikawa S, Fujita N, Takeyama H, Matsunaga T (2009) Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res 19:1801–1808

    PubMed  CAS  Google Scholar 

  • Nash CZ (2004) Magnetic microbes in Mono Lake. Mono Lake Newsletter Fall 2004:14

    Google Scholar 

  • Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. Fems Microbiol Rev 27:313–339

    PubMed  CAS  Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221

    PubMed  CAS  Google Scholar 

  • Paoletti LC, Blakemore RP (1986) Hydroxamate production by Aquaspirillum magnetotacticum. J Bacteriol 167:73–76

    PubMed  CAS  Google Scholar 

  • Philipse AP, Maas D (2002) Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability. Langmuir 18:9977–9984

    CAS  Google Scholar 

  • Politi Y, Metzler RA, Abrecht M, Gilbert B, Wilt FH, Sagi I, Addadi L, Weiner S, Gilbert P (2008) Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule. Proc Natl Acad Sci U S A 105:17362–17366

    PubMed  CAS  Google Scholar 

  • Pósfai M, Moskowitz BM, Arato B, Schüler D, Flies C, Bazylinski DA, Frankel RB (2006) Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249:444–455

    Google Scholar 

  • Pradel N, Santini C-L, Bernadac A, Fukumori Y, Wu L-F (2006) Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc Natl Acad Sci USA 103:17485–17489

    PubMed  CAS  Google Scholar 

  • Richter M, Kube M, Bazylinski DA, Lombardot T, Glockner FO, Reinhardt R, Schüler D (2007) Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J Bacteriol 189:4899–4910

    PubMed  CAS  Google Scholar 

  • Rodgers FG, Blakemore RP, Blakemore NA, Frankel RB, Bazylinski DA, Maratea D, Rodgers C (1990) Intercellular structure in a many-celled magnetotactic prokaryote. Arch Microbiol 154:18–22

    Google Scholar 

  • Rong CB, Huang YJ, Zhang WJ, Jiang W, Li Y, Li JL (2008) Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res Microbiol 159:530–536

    PubMed  CAS  Google Scholar 

  • Sakaguchi T, Arakaki A, Matsunaga T (2002) Desulfovibrio magneticus sp nov., a novel sulfate-reducing bacterium that produces intracellular single-domain-sized magnetite particles. IntJ Syst Evol Microbiol 52:215–221

    CAS  Google Scholar 

  • Sandy M, Butler A (2009) Microbial iron acquisition: marine and terrestrial siderophores. Chem Rev 109:4580–4595

    PubMed  CAS  Google Scholar 

  • Scheffel A, Schüler D (2007) The acidic repetitive domain of the magnetospirillum gryphiswaldense mamj protein displays hypervariability but is not required for magnetosome chain assembly. J Bacteriol 189:6437–6446

    PubMed  CAS  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–115

    PubMed  CAS  Google Scholar 

  • Scheffel A, Gärdes A, Grünberg K, Wanner G, Schüler D (2008) The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense, but regulate the size of magnetosome crystals. J Bacteriol 190:377–386

    PubMed  CAS  Google Scholar 

  • Schleifer K-H, Schüler D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov., description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 14:379–385

    Google Scholar 

  • Schubbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schuler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852

    PubMed  CAS  Google Scholar 

  • Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS, Martinez D, Ross CA, Schüler D, Cox BL, Nealson KH, Bazylinski DA (2009) Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 75:4835–4852

    PubMed  Google Scholar 

  • Schüler D (2008) Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32:654–672

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1996) Iron-limited growth and kinetics of iron uptake in Magnetospirilum gryphiswaldense. Arch Microbiol 166:301–307

    PubMed  Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  • Schultheiss D, Schüler D (2003) Development of a genetic system for Magnetospirillum gryphiswaldense. Archives Microbiol 179:89–94

    CAS  Google Scholar 

  • Sparks NHC, Courtaux L, Mann S, Board RG (1986) Magnetotactic bacteria are widely distributed in sediments in the U.K. FEMS Microbiol Let 37:305–308

    Google Scholar 

  • Spring S, Amann R, Ludwig W, Schleifer K-H, van Gemerden H, Petersen N (1993) Dominating role of an unusual magnetotactic bacterium in the microaerobic zone of a freshwater sediment. Appl Environ Microbiol 50:2397–2403

    Google Scholar 

  • Staniland S, Ward B, Harrison A, van der Laan G, Telling N (2007) Rapid magnetosome formation shown by real-time x-ray magnetic circular dichroism. Proc Natl Acad Sci USA 104:19524–19528

    PubMed  CAS  Google Scholar 

  • Staniland S, Williams W, Telling N, Van Der Laan G, Harrison A, Ward B (2008) Controlled cobalt doping of magnetosomes in vivo. Nat Nano 3:158–162

    CAS  Google Scholar 

  • Sun J-B, Duan J-H, Dai S-L, Ren J, Zhang Y-D, Tian J-S, Li Y (2007) In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett 258:109–117

    PubMed  CAS  Google Scholar 

  • Sun JB, Duan JH, Dai SL, Ren J, Guo L, Jiang W, Li Y (2008) Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from magnetospirillum gryphiswaldense. Biotechnol Bioeng 101:1313–1320

    PubMed  CAS  Google Scholar 

  • Suzuki T, Okamura Y, Calugay RJ, Takeyama H, Matsunaga T (2006) Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J Bacteriol 188:2275–2279

    PubMed  CAS  Google Scholar 

  • Suzuki T, Okamura Y, Arakaki A, Takeyama H, Matsunaga T (2007) Cytoplasmic ATPase involved in ferrous ion uptake from magnetotactic bacterium Magnetospirillum magneticum AMB-1. FEBS Let 581:3443–3448

    CAS  Google Scholar 

  • Tanaka T, Matsunaga T (2000) Fully automated chemiluminescence immunoassay of insulin using antibody-protein A-bacterial magnetic particle complexes. Anal Chem 72:3518–3522

    PubMed  CAS  Google Scholar 

  • Tanaka T, Maruyama K, Yoda K, Nemoto E, Udagawa Y, Nakayama H, Takeyama H, Matsunaga T (2003) Development and evaluation of an automated workstation for single nucleotide polymorphism discrimination using bacterial magnetic particles. Biosens Bioelectron 19:325–330

    PubMed  CAS  Google Scholar 

  • Taoka A, Asada R, Sasaki H, Anzawa K, Wu L-F, Fukumori Y (2006) Spatial localizations of Mam22 and Mam12 in the magnetosomes of magnetospirillum magnetotacticum. J Bacteriol 188:3805–3812

    PubMed  CAS  Google Scholar 

  • Taoka A, Asada R, Wu LF, Fukumori Y (2007) Polymerization of the actin-like protein MamK, which is associated with magnetosomes. J Bacteriol 189:8737–8740

    PubMed  CAS  Google Scholar 

  • Taoka A, Umeyama C, Fukumori Y (2009) Identification of iron transporters expressed in the magnetotactic bacterium Magnetospirillum magnetotacticum. Curr Microbiol 58:177–181

    PubMed  CAS  Google Scholar 

  • Taylor AP, Barry JC (2004) Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes. J Microsc 213:180–197

    PubMed  CAS  Google Scholar 

  • Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D (2005) A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 187:7176–7184

    PubMed  CAS  Google Scholar 

  • Vali H, Forster O, Amarantidid G, Petersen H (1987) Magnetotactic bacteria and their magnetofossils in sediments. Earth Planet Sci Lett 86:389–400

    Google Scholar 

  • Vereda F, de Vicente J, Hidalgo-Alvarez R (2009) Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. ChemPhysChem 10:1165–1179

    PubMed  CAS  Google Scholar 

  • Winklhofer M (2007) Magnetite-based magnetoreception in higher organisms. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Winklhofer M, Petersen N (2007) Paleomagnetism and magnetic bacteria. In: Schüler D (ed) Magnetoreception and magnetosomes in bacteria. Springer, Heidelberg

    Google Scholar 

  • Winklhofer M, Holtkamp-Rötzler E, Hanzlik M, Fleissner G, Petersen N (2001) Clusters of superparamagnetic magnetite particles in the upper-beak skin of homing pigeons: evidence of a magnetoreceptor? Eur J Mineral 13:659–669

    CAS  Google Scholar 

  • Xiong Y, Ye J, Gu XY, Chen QW (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings. J Phys Chem C 111:6998–7003

    CAS  Google Scholar 

  • Yijun H, Weijia Z, Wei J, Chengbo R, Ying L (2007) Disruption of a fur-like gene inhibits magnetosome formation in magnetospirillum gryphiswaldense MSR-1. Biochem-Moscow 72:1247–1253

    Google Scholar 

  • Yoshino T, Matsunaga T (2006) Efficient and Stable Display of Functional Proteins on Bacterial Magnetic Particles Using Mms13 as a Novel Anchor Molecule. Appl Environ Microbiol 72:465–471

    PubMed  CAS  Google Scholar 

  • Yoshino T, Takahashi M, Takeyama H, Okamura Y, Kato F, Matsunaga T (2004) Assembly of G protein-coupled receptors onto nanosized bacterial magnetic particles using Mms16 as an anchor molecule. Appl Environ Microbiol 70:2880–2885

    PubMed  CAS  Google Scholar 

  • Yoza B, Arakaki A, Matsunaga T (2003) DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J Biotechnol 101:219–228

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Prof. Müller is acknowledged for inviting us to contribute to this book. We thank Nicolas Menguy for the TEM images of magnetosomes in Fig. 1.3. The authors want to thank Prof. Fratzl for offering them the opportunity to join his department. Discussions with current and older group members were appreciated. Corrections and suggestions on the chapter by Kevin Eckes and Matthew Harrington are acknowledged. Research in the laboratory is supported by the Deutsche Forschungsgemeinschaft (DFG), the European Union, and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Faivre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baumgartner, J., Faivre, D. (2011). Magnetite Biomineralization in Bacteria. In: Müller, W. (eds) Molecular Biomineralization. Progress in Molecular and Subcellular Biology(), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21230-7_1

Download citation

Publish with us

Policies and ethics