Advertisement

Decomposition of a Curve into Arcs and Line Segments Based on Dominant Point Detection

  • Thanh Phuong Nguyen
  • Isabelle Debled-Rennesson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

A new solution is proposed to decompose a curve into arcs and straight line segments in O(nlogn) time. It is a combined solution based on arc detection [1] and dominant point detection [2] to strengthen the quality of the segmentation results. Experimental results show the fastness of the proposed method.

Keywords

Line Segment Tangent Space Straight Line Segment Straight Segment Pattern Recognition Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nguyen, T.P., Debled-Rennesson, I.: A linear method for curves segmentation into digital arcs. Technical report, LORIA, Nancy university (2010), http://www.loria.fr/~nguyentp/pubs/arcSegmentation.pdf
  2. 2.
    Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognition 44(1), 32–44 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Rosin, P.L., West, G.A.W.: Segmentation of edges into lines and arcs. Image Vision Comput. 7(2), 109–114 (1989)CrossRefGoogle Scholar
  4. 4.
    Chen, J.-M., Ventura, J.A., Wu, C.H.: Segmentation of planar curves into circular and line segments. Image Vision and Computing 14, 71–83 (1996)CrossRefGoogle Scholar
  5. 5.
    Horng, J.H., Li, J.T.: A dynamic programming approach for fitting digital planar curves with line segments and circular arcs. Pattern Recognition Letters 22(2), 183–197 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Horng, J.H.: An adaptive smoothing approach for fitting digital planar curves with line segments and circular arcs. Pattern Recognition Letters 24(1-3), 565–577 (2003)CrossRefGoogle Scholar
  7. 7.
    Salmon, J.P., Debled-Rennesson, I., Wendling, L.: A new method to detect arcs and segments from curvature profiles. In: ICPR, vol. 3, pp. 387–390 (2006)Google Scholar
  8. 8.
    Tortorella, F., Patraccone, R., Molinara, M.: A dynamic programming approach for segmenting digital planar curves into line segments and circular arcs. In: ICPR, pp. 1–4 (2008)Google Scholar
  9. 9.
    Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. PAMI 13(3), 209–216 (1991), doi:10.1109/34.75509CrossRefzbMATHGoogle Scholar
  10. 10.
    Bodansky, E., Gribov, A.: Approximation of a polyline with a sequence of geometric primitives. In: Campilho, A., Kamel, M.S. (eds.) ICIAR 2006. LNCS, vol. 4142, pp. 468–478. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments decomposition of noisy shapes in linear time. Computers & Graphics 30(1), 30–36 (2006)CrossRefzbMATHGoogle Scholar
  12. 12.
    Nguyen, T.P., Debled-Rennesson, I.: Curvature estimation in noisy curves. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 474–481. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Latecki, L., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. PAMI 22(10), 1185–1190 (2000), doi:10.1109/34.879802CrossRefGoogle Scholar
  14. 14.
    Sarkar, D.: A simple algorithm for detection of significant vertices for polygonal approximation of chain-coded curves. Pattern Recognition Letters 14(12), 959–964 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Thanh Phuong Nguyen
    • 1
  • Isabelle Debled-Rennesson
    • 1
  1. 1.ADAGIo Team, LORIA, UMR 7503Nancy University Campus ScientifiqueVandoeuvre-ls-Nancy CedexFrance

Personalised recommendations