Using Active Illumination for Accurate Variational Space-Time Stereo

  • Sergey Kosov
  • Thorsten Thormählen
  • Hans-Peter Seidel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


This paper addresses the problem of space-time stereo with active illumination and presents a formulation of this problem in the variational framework. Variational problems of this scale are computationally expensive to solve directly. We overcome this challenge by showing that speed-improving techniques, as the full-multi-grid and the multi-level-adaptation techniques, can be applied. We evaluate the performance of our method on 3 ground-truth datasets. The experimental results for synthetic and real datasets show that the combination of active illumination and variational space-time stereo improves the quality of the reconstruction on average by up to 3.1 times compared to a reconstruction from a single passive stereo image pair without active illumination.


Error Threshold Stereo Pair Variational Framework Disparity Estimation Smoothness Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ross, W.P.: A practical stereo vision system. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 148–153 (1993)Google Scholar
  2. 2.
    Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: International Conference on Computer Vision, pp. 508–515 (2001)Google Scholar
  3. 3.
    Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proc. Computer Vision and Pattern Recognition, vol. I, pp. 195–202 (2003),
  4. 4.
    Mémin, E., Pérez, P.: Dense estimation & object-based segmentation of the optical flow with robust techniques. IEEE Trans. on Image Processing 7, 703–719 (1998)CrossRefGoogle Scholar
  5. 5.
    Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Bruhn, A., Weickert, J., Kohlberger, T., Schnörr, C.: A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int. J. Comput. Vision 70, 257–277 (2006)CrossRefGoogle Scholar
  7. 7.
    Fedorenko, R.: Relaxation method for solving elliptic differential equations. Journal of Computational Mathematics and Mathematical Phisics 1, 922–927 (1961)Google Scholar
  8. 8.
    Valgaerts, L., Bruhn, A., Zimmer, H., Weickert, J., Stoll, C., Theobalt, C.: Joint estimation of motion, structure and geometry from stereo sequences. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 568–581. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Kosov, S., Thormählen, T., Seidel, H.-P.: Accurate real-time disparity estimation with variational methods. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009. LNCS, vol. 5875, pp. 796–807. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Brandt, A.: Multi-level adaptive technique (MLAT) for fast numerical solution to boundary value problems. Lecture Notes in Physics 18, 82–89 (1973)CrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, L., Curless, B., Seitz, S.: Spacetime stereo: Shape recovery for dynamic scenes. In: IEEE Conf. on Comp. Vision and Pattern Recognition, pp. 367–374 (2003)Google Scholar
  12. 12.
    Kang, S.B., Webb, J., Zitnick, C., Kanade, T.: A multibaseline stereo system with active illumination and real-time image acquisition. In: Proceedings of the Fifth International Conference on Computer Vision (ICCV 1995), pp. 88–93 (1995)Google Scholar
  13. 13.
    Frueh, C., Zakhor, A.: Capturing 2\(\frac{1}{2}\)d depth and texture of time-varying scenes using structured infrared light. In: Proc. 3DIM, pp. 318–325 (2005)Google Scholar
  14. 14.
    Ristivojevic, M., Konrad, J.: Space-time image sequence analysis: Object tunnels and occlusion volumes. IEEE Transactions on Image Processing 15, 364–376 (2006)CrossRefGoogle Scholar
  15. 15.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  16. 16.
    Charbonnier, P., Aubert, G., Blanc-Ferraud, M., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: International Conference on Image Processing, vol. 2, pp. 168–172 (1994)Google Scholar
  17. 17.
    Cohen, I.: Nonlinear variational method for optical flow computation. In: Eighth Scandinavian Conference on Image Analysis, vol. 1, pp. 523–530 (1993)Google Scholar
  18. 18.
    Cheng, A., Cheng, D.T.: Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements 29, 268–302 (2005)CrossRefzbMATHGoogle Scholar
  19. 19.
    Kosov, S.: 3D map reconstruction with variational methods. Master thesis, Saarland University (2008)Google Scholar
  20. 20.
    Blake, A., McCowen, D., Lo, H.R., Lindsey, P.J.: Trinocular active range-sensing. IEEE Trans. Pattern Anal. Mach. Intell. 15, 477–483 (1993)CrossRefGoogle Scholar
  21. 21.
    Koninckx, T., Gool, L.V.: Real-time range acquisition by adaptive structured light. IEEE Transac. on Pattern Analysis & Machine Intelligence 28, 432–445 (2006)CrossRefGoogle Scholar
  22. 22.
    Horn, E., Kiryati, N.: Toward optimal structured light patterns. In: Proc. 3DIM, p. 28. IEEE Computer Society, Washington, DC, USA (1997)Google Scholar
  23. 23.
    Koschan, A., Rodehorst, V., Spiller, K.: Color stereo vision using hierarchical block matching and active color illumination. In: ICPR 1996, vol. I, pp. 835–839 (1996)Google Scholar
  24. 24.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense stereo correspondence algorithms. International Journal of Computer Vision 47, 7–42 (2001)CrossRefzbMATHGoogle Scholar
  25. 25.
    Sizintsev, M., Wildes, R.P.: Spatiotemporal stereo via spatiotemporal quadric element (stequel) matching. In: CVPR, pp. 493–500 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergey Kosov
    • 1
  • Thorsten Thormählen
    • 1
  • Hans-Peter Seidel
    • 1
  1. 1.Max-Planck-Institut Informatik (MPII)SaarbrückenGermany

Personalised recommendations