Sparse Similarity-Based Fisherfaces

  • Jens Fagertun
  • David D. Gomez
  • Mads F. Hansen
  • Rasmus R. Paulsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


In this work, the effect of introducing Sparse Principal Component Analysis within the Similarity-based Fisherfaces algorithm is examined. The technique aims at mimicking the human ability to discriminate faces by projecting the faces in a highly discriminative and easy interpretative way. Pixel intensities are used by Sparse Principal Component Analysis and Fisher Linear Discriminant Analysis to assign a one dimensional subspace projection to each person belonging to a reference data set. Experimental results performed in the AR dataset show that Similarity-based Fisherfaces in a sparse version can obtain the same recognition results as the technique in a dense version using only a fraction of the input data. Furthermore, the presented results suggest that using SPCA in the technique offers robustness to occlusions.


Face recognition Sparse Principal Component Analysis Fisher Linear Discriminant Analysis Biometrics Multi- Subspace Method 


  1. 1.
    Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 103–108 (1990)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3, 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 711–720 (1997)CrossRefGoogle Scholar
  4. 4.
    Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: Discriminative common vectors for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 4–13 (2005)CrossRefGoogle Scholar
  5. 5.
    Liu, Q., Huang, R., Lu, H., Ma, S.: Face recognition using Kernel-based Fisher discriminant analysis. In: 2002 Proceedings: Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 197–201 (2002)Google Scholar
  6. 6.
    Baddeley, A.D.: Essentials of Human Memory. Psychology Press, Taylor and Francis (1999)Google Scholar
  7. 7.
    Gomez, D.D., Fagertun, J., Ersbll, B., Sukno, F.M., Frangi, A.F.: Similarity-based Fisherfaces. Pattern Recognition Letters 30(12), 1110–1116 (2009)CrossRefGoogle Scholar
  8. 8.
    Martinez, A.M., Benavente, R.: The AR Face Database. Technical Report, Computer Vision Center Purdue University (1998)Google Scholar
  9. 9.
    Zou, H., Hastie, T., Tibshirani, R.: Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics 15, 265–286 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Journee, M., Nesterov, Y., Richtarik, P., Sepulchre, R.: Generalized Power Method for Sparse Principal Component Analysis. The Journal of Machine Learning Research 11, 517–553 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jens Fagertun
    • 1
  • David D. Gomez
    • 2
  • Mads F. Hansen
    • 1
  • Rasmus R. Paulsen
    • 1
  1. 1.DTU InformaticsImage Analysis & Computer GraphicsLyngbyDenmark
  2. 2.Department of Signal Theory and CommunicationsCarlos III UniversityMadridSpain

Personalised recommendations