Indexing Tree Structures through Caterpillar Decomposition

  • Fadi Yilmaz
  • M. Fatih Demirci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

Graphs provide effective data structures modeling complex relations and schemaless data such as images, XML documents, circuits, compounds, and proteins. Given a query graph, efficiently finding all database graphs in which the query is a subgraph is an important problem raising in different domains. In this paper, we propose a new method for indexing tree structures based on a graph-theoretic concept called caterpillar decomposition and discuss its advantages over two previous indexing algorithms. Experimental evaluation of the proposed framework including the comparison with the previous approaches demonstrates the efficacy of the overall approach.

Keywords

shape retrieval indexing caterpillar decomposition 

References

  1. 1.
    Blum, H.: Biological shape and visual science (part i). Journal of Theoretical Biology 38(2), 205–287 (1973)CrossRefGoogle Scholar
  2. 2.
    Chen, Q., Lim, A., Ong, K.: D(k)-index: an adaptive structural summary for graph-structured data. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, pp. 134–144. ACM, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Demirci, M.F., van Leuken, R.H., Veltkamp, R.C.: Indexing through laplacian spectra. Computer Vision Image Understanding 110(3), 312–325 (2008)CrossRefGoogle Scholar
  4. 4.
    Giblin, P., Kimia, B.: On the local form and transitions of symmetry sets, medial axes, and shocks. International Journal of Computer Vision 54(1-3), 143–156 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Gupta, A.: Embedding tree metrics into low dimensional euclidean spaces. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 694–700. ACM, New York (1999)Google Scholar
  6. 6.
    Matousek, J.: On embedding trees into uniformly convex banach spaces. Israel Journal of Mathematics 237, 221–237 (1999)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Min, J., Chung, C., Shim, K.: An adaptive path index for xml data using the query workload. Information Systems 30(6), 467–487 (2005)CrossRefGoogle Scholar
  8. 8.
    Shasha, D., Wang, J., Giugno, R.: Algorithmics and applications of tree and graph searching. In: Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Madison, Wisconsin, pp. 39–52. ACM, New York (2002)Google Scholar
  9. 9.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of the Shape Modeling International, pp. 167–178. IEEE Computer Society, Washington, DC, USA (2004)Google Scholar
  10. 10.
    Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., Zucker, S.W.: Indexing hierarchical structures using graph spectra. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(7), 1125–1140 (2005)CrossRefGoogle Scholar
  11. 11.
    Yan, X., Yu, P., Han, J.: Graph indexing: a frequent structure-based approach. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, Paris, France, pp. 335–346. ACM, New York (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fadi Yilmaz
    • 1
  • M. Fatih Demirci
    • 1
  1. 1.Computer Engineering DepartmentTOBB University of Economics and TechnologyAnkaraTurkey

Personalised recommendations