Anatomical Landmark Tracking for the Analysis of Animal Locomotion in X-ray Videos Using Active Appearance Models

  • Daniel Haase
  • Joachim Denzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


X-ray videography is one of the most important techniques for the locomotion analysis of animals in biology, motion science and robotics. Unfortunately, the evaluation of vast amounts of acquired data is a tedious and time-consuming task. Until today, the anatomical landmarks of interest have to be located manually in hundreds of images for each image sequence. Therefore, an automatization of this task is highly desirable. The main difficulties for the automated tracking of these landmarks are the numerous occlusions due to the movement of the animal and the low contrast in the x-ray images. For this reason, standard tracking approaches fail in this setting. To overcome this limitation, we analyze the application of Active Appearance Models for this task. Based on real data, we show that these models are capable of effectively dealing with occurring occlusions and low contrast and can provide sound tracking results.


Active Appearance Models X-ray Videography Landmark Tracking Locomotion Analysis 


  1. 1.
    Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vision 56(3), 221–255 (2004)CrossRefGoogle Scholar
  2. 2.
    Bey, M.J., Zauel, R., Brock, S.K., Tashman, S.: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J. Biomech. Eng. 128, 604–609 (2006)CrossRefGoogle Scholar
  3. 3.
    Brainerd, E.L., Gatesy, S.M., Baier, D.B., Hedrick, T.L.: A method for accurate 3D reconstruction of skeletal morphology and movement with CTX imaging. Comp. Biochem. Physiol. 146, 119 (2007)CrossRefGoogle Scholar
  4. 4.
    Brainerd, E.L., Baier, D.B., Gatesy, S.M., Hedrick, T.L., Metzger, K.A., Gilbert, S.L., Crisco, J.J.: X-ray reconstruction of moving morphology (XROMM): Precision, accuracy and applications in comparative biomechanics research. J. Exp. Zool. A 313A(5), 262–279 (2010)Google Scholar
  5. 5.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE T. Pattern Anal. 23(6), 681–685 (2001)CrossRefGoogle Scholar
  7. 7.
    Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Gatesy, S.M.: Guineafowl hind limb function. I: Cineradiographic analysis and speed effects. J. Morphol. 240(2), 1097–4687 (1999)CrossRefGoogle Scholar
  9. 9.
    Hager, G.D., Belhumeur, P.N.: Efficient region tracking with parametric models of geometry and illumination. IEEE T. Pattern Anal. 20(10), 1025–1039 (1998)CrossRefGoogle Scholar
  10. 10.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1-3), 185–203 (1981)CrossRefGoogle Scholar
  11. 11.
    Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE T. Pattern Anal. 24(7), 996–1000 (2002)CrossRefGoogle Scholar
  12. 12.
    Lelieveldt, B., Üzümcü, M., van der Geest, R., Reiber, J., Sonka, M.: Multi-view active appearance models for consistent segmentation of multiple standard views. International Congress Series 1256, 1141–1146 (2003)CrossRefGoogle Scholar
  13. 13.
    Liu, X.: Video-based face model fitting using adaptive active appearance model. Image Vision Comput. 28(7), 1162–1172 (2010)CrossRefGoogle Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  15. 15.
    Rohlfing, T., Denzler, J., Gräßl, C., Russakoff, D.B., Maurer Jr, C.R.: Markerless real-time 3-d target region tracking by motion backprojection from projection images. IEEE T. Med. Imaging 24(11), 1455–1468 (2005)CrossRefGoogle Scholar
  16. 16.
    Roussos, A., Katsamanis, A., Maragos, P.: Tongue tracking in ultrasound images with active appearance models. In: Proceedings of the IEEE International Conference on Image Processing, pp. 1733–1736 (2009)Google Scholar
  17. 17.
    Stegmann, M.B.: Active Appearance Models: Theory, Extensions and Cases. Master’s thesis, Informatics and Mathematical Modelling, Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby (2000)Google Scholar
  18. 18.
    Sung, J., Kim, D.: Adaptive active appearance model with incremental learning. Pattern Recogn. Lett. 30(4), 359–367 (2009)CrossRefGoogle Scholar
  19. 19.
    Walker, K.N., Cootes, T.F., Taylor, C.J.: Automatically building appearance models from images sequences using salient features. In: Proceedings of the British Machine Vision Conference, British Machine Vision Association (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Haase
    • 1
  • Joachim Denzler
    • 1
  1. 1.Chair for Computer VisionFriedrich Schiller University of JenaJenaGermany

Personalised recommendations