Advertisement

Projector Calibration by “Inverse Camera Calibration”

  • Ivan Martynov
  • Joni-Kristian Kamarainen
  • Lasse Lensu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

The accuracy of 3-D reconstructions depends substantially on the accuracy of active vision system calibration. In this work, the problem of video projector calibration is solved by inverting the standard camera calibration work flow. The calibration procedure requires a single camera, which does not need to be calibrated and which is used as the sensor whether projected dots and calibration pattern landmarks, such as the checkerboard corners, coincide. The method iteratively adjusts the projected dots to coincide with the landmarks and the final coordinates are used as inputs to a camera calibration method. The otherwise slow iterative adjustment is accelerated by estimating a plane homography between the detected landmarks and the projected dots, which makes the calibration method fast.

Keywords

Camera Calibration Checkerboard Pattern Extrinsic Parameter Video Projector Reprojection Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ansar, A., Daniilidis, K.: Linear pose estimation from points or lines. IEEE PAMI 25(5) (2003)Google Scholar
  2. 2.
    Bouguet, J.Y.: Camera calibration toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/
  3. 3.
    Drareni, J., Roy, S., Sturm, P.: Geometric video projector auto-calibration. In: CVPR Workshop on Projector-Camera Systems (2009)Google Scholar
  4. 4.
    Furukawa, Y., Ponce, J.: Accurate camera calibration from multi-view stereo and bundle adjustment. Int. J. Comput. Vis. 84, 257–268 (2009)CrossRefGoogle Scholar
  5. 5.
    Hartley, R., Zisserman, A.: Multiple View Geometry in computer vision. Cambridge Press, Cambridge (2003)zbMATHGoogle Scholar
  6. 6.
    Heikkilä, J.: Geometric camera calibration using circular control points. IEEE PAMI 22(10) (2000)Google Scholar
  7. 7.
    Kimura, M., Mochimary, M., Kanade, T.: Projector calibration using arbitrary planes and calibrated camera. In: CVPR (2007)Google Scholar
  8. 8.
    Okatani, T., Deguchi, K.: Autocalibration of a projector-camera system. IEEE PAMI 27(12) (2005)Google Scholar
  9. 9.
    Sadlo, F., Weyrich, T., Peikert, R., Gross, M.: A practical structured light acquisition system for point-based geometry and texture. In: Eurographics Symposium of Point-Based Graphics (2005)Google Scholar
  10. 10.
    Salvi, J., Fernandez, S., Pribanic, T., Llado, X.: A state of the art in structured light patterns for surface profilometry. Pattern Recognition 43, 2666–2680 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Shen, T.-S., Menq, C.-H.: Digital projector calibration for 3-D active vision systems. J. Manuf. Sci. Eng. 124(1) (2002)Google Scholar
  12. 12.
    Sun, W., Cooperstock, J.R.: An empirical evaluation of factors influencing camera calibration accuracy using three publicly available techniques. Machine Vision and Applications 17(1), 51–67 (2006)CrossRefGoogle Scholar
  13. 13.
    Tao, J.: Slide projector calibration based on calibration of digital camera. In: SPIE, vol. 6788 (2007)Google Scholar
  14. 14.
    Tsai, R.Y.: A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE J. of Robotics and Automation 3(4) (1987)Google Scholar
  15. 15.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: ICCV (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ivan Martynov
    • 1
  • Joni-Kristian Kamarainen
    • 1
  • Lasse Lensu
    • 1
  1. 1.Machine Vision and Pattern Recognition Laboratory (Kouvola Unit)Lappeenranta University of TechnologyFinland

Personalised recommendations