Advertisement

Fully Automatic Liver Volumetry Using 3D Level Set Segmentation for Differentiated Liver Tissue Types in Multiple Contrast MR Datasets

  • Oliver Gloger
  • Klaus Toennies
  • Jens-Peter Kuehn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

Modern epidemiological studies analyze a high amount of magnetic resonance imaging (MRI) data, which requires fully automatic segmentation methods to assist in organ volumetry. We propose a fully automatic two-step 3D level set algorithm for liver segmentation in MRI data that delineates liver tissue on liver probability maps and uses a distance transform based segmentation refinement method to improve segmentation results. MR intensity distributions in test subjects are extracted in a training phase to obtain prior information on liver, kidney and background tissue types. Probability maps are generated by using linear discriminant analysis and Bayesian methods. The algorithm is able to differentiate between normal liver tissue and fatty liver tissue and generates probability maps for both tissues to improve the segmentation results. The algorithm is embedded in a volumetry framework and yields sufficiently good results for use in epidemiological studies.

Keywords

Level Set Segmentation Distance Transformation Linear Discriminant Analysis Bayes’ Theorem 

References

  1. 1.
    Gao, L., Heath, D., Kuszyk, B., Fishman, E.: Automatic liver segmentation technique for three-dimensional visualization of CT data. Radiology 201(2), 359–364 (1996)CrossRefGoogle Scholar
  2. 2.
    Seo, K.S.: Improved Fully Automatic Liver Segmentation Using Histogram Tail Threshold Algorithms. In: International Conference on Computational Science, pp. 822–825 (2005)Google Scholar
  3. 3.
    Evans, A., Lambrou, T., Linnery, A., Todd-Pokroped, A.: Automatic Segmentation of Liver Using a Toplogy Adaptive Snake. In: International Conference on Biomedical Engineering, pp. 205–208 (2004)Google Scholar
  4. 4.
    Schenk, A., Prause, G.P.M., Peitgen, H.O.: Efficient semiautomatic segmentation of 3d objects in medical images. In: Medical Image Computing and Computer-Assisted Intervention, pp. 186–195 (2001)Google Scholar
  5. 5.
    Daisuke, F., Akinobu, S., Hidefumi, K.: Automatic Liver Segmentation Method based on Maximum A Posterior Probability Estimation and LevelSet Method. In: Medical Image Computing and Computer Assisted Intervention, pp. 117–124 (2007)Google Scholar
  6. 6.
    Lamecker, H., Lange, T., Seebass, M.: A Statistical Shape Model for the Liver. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 421–427. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2008). IEEE Computer Society, Anchorage (2008)Google Scholar
  8. 8.
    Soler, L., Delingette, H., Malandain, G., Montagnat, J., Ayache, N., Koehle, C., Dourthe, O., Malassagne, B., Smith, M., Mutter, D., et al.: Fully Automatic Anatomical, Pathological, and Functional Segmentation from CT Scans for Hepatic Surgery. In: Hanson, K.M. (ed.), February 14, pp. 246–255. SPIE, San Diego (2000)Google Scholar
  9. 9.
    Heimann, T., Wolf, I., Meinzer, H.-P.: Active shape models for a fully automated 3D segmentation of the liver – an evaluation on clinical data. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 41–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Li, M., Yang, L.: Liver Segmentation Based on Expectation Maximization and Morphological Filters in CT Images. In: Bioinformatics and Biomedical Engineering (ICBBE 2007). IEEE, Wuhan (2007)Google Scholar
  11. 11.
    Freiman, M., Eliassaf, O., Taieb, Y., Joskowicz, L., Azraq, Y., Sosna, J.: An iterative Bayesian approach for nearly automatic liver segmentation: algorithm and validation. International Journal of Computer Assisted Radiology and Surgery 3(5), 439–446 (2008)CrossRefGoogle Scholar
  12. 12.
    Sosna, J., Berman, P., Azraq, Y., Libson, E.: Liver segmentation and volume calculation from MDCT using Bayesian likelihood maximization technique: comparison with manual tracing technique. RSNA, Chicago (2006)Google Scholar
  13. 13.
    Massoptier, L., Casciaro, S.: Fully automatic liver segmentation through graph-cut technique. In: Rousseau, J., Delhomme, G., Akay, M. (eds.), Lyon, France, August 22-26, pp. 5243–5246. IEEE, Los Alamitos (2007)Google Scholar
  14. 14.
    Beichel, R., Bauer, C., Bornik, A., Sorantin, E., Bischof, H.: Liver Segmentation in CT Data: A Segmentation Refinement Approach. In: Ayache, N., Ourselin, S., Maeder, A. (eds.), Brisbane, Australia, pp. 235–245. Springer, Heidelberg (October 29, 2007)Google Scholar
  15. 15.
    Rusko, L., Bekes, G.: Liver segmentation for contrast-enhanced MR images using partitioned probabilistic model. International Journal of Computer Assisted Radiology and Surgery 6(1), 13–20 (2010)CrossRefGoogle Scholar
  16. 16.
    Platero, C., Gonzalez, M., Tobar, M.C., Poncela, J.M., Sanguino, J., Asensio, G., Santos, E.: Automatic method to segment the liver on multi-phase MRI. In: Jover, J.H. (ed.), Barcelona, Spain, June 25-28 (2008)Google Scholar
  17. 17.
    Cheng, K., Gu, L., Xu, J.: A novel shape prior based level set method for liver segmentation from MR Images, Shenzhen, China, May 30-31, pp. 144–147 (2008)Google Scholar
  18. 18.
    Chen, G., Gu, L., Qian, L., Xu, J.: An Improved Level Set for Liver Segmentation and Perfusion Analysis in MRIs. IEEE Transactions on Information Technology in Biomedicine 3(1), 94–103 (2009)CrossRefGoogle Scholar
  19. 19.
    Yuan, Z., Wang, Y., Yang, J., Liu, Y.: A novel automatic liver segmentation technique for MR images. In: Image and Signal Processing (CISP), Yantai, pp. 1282–1286 (2010)Google Scholar
  20. 20.
    Baumeister, S.E., Voelzke, H., Marschall, P., John, U., Schmidt, C.O., Flessa, S., Alte, D.: Impact of Fatty Liver Disease on Health Care Utilization and Costs in a General Population: A 5-Year Observation. Gastroenterology 134(1), 85–94 (2008)CrossRefGoogle Scholar
  21. 21.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: International Conference on Computer Vision (ICCV 1995). IEEE Computer Society, Massachusetts (1995)Google Scholar
  22. 22.
    Hussain, H.K., Chenevert, T.L., Londy, F.J., Gulani, V., Swanson, S.D., McKenna, B.J., Appelman, H.D., Adusumilli, S., Greenson, J.K., Conjeevaram, H.: Hepatic fat fraction: MR imaging for quantitative measurement and display early experience. Radiology 237, 1048–1055 (2005)CrossRefGoogle Scholar
  23. 23.
    Whitaker, R.T., Xue, X.: Variable-conductance, Level-Set Curvature for Image Denoising, Thessaloniki, Greece, pp. 142–145 (2001)Google Scholar
  24. 24.
    Gloger, O., Kuehn, J., Stanski, A., Voelzke, H., Puls, R.: A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images. Magnetic Resonance Imaging 28(6), 882–897 (2010)CrossRefGoogle Scholar
  25. 25.
    Fisher, R.: The statistical utilization of multiple measurements. Ann. Eugenics 8, 376–386 (1938)CrossRefzbMATHGoogle Scholar
  26. 26.
    Rao, C.: The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society 10, 159–203 (1948)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Crum, W.R., Camara, O., Hill, D.L.G.: Generalized Overlap Measures for Evalution and Validation in Medical Image Analysis. IEEE Transactions on Medical Imaging 25(11), 1451–1458 (2006)CrossRefGoogle Scholar
  28. 28.
    Maier, F., Wimmer, A., Soza, G., Kaftan, J.N., Fritz, D., Dillmann, R.: Automatic Liver Segmentation Using the Random Walker Algorithm. Bildverarbeitung fuer die Medizin, pp. 65–61 (2008)Google Scholar
  29. 29.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Oliver Gloger
    • 1
  • Klaus Toennies
    • 2
  • Jens-Peter Kuehn
    • 3
  1. 1.Institute for Community MedicineErnst Moritz Arndt University of GreifswaldGreifswaldGermany
  2. 2.Institute for Simulation and GraphicsOtto-von-Guericke University of MagdeburgMagdeburgGermany
  3. 3.Institute for Diagnostic Radiology and NeuroradiologyErnst Moritz Arndt University of GreifswaldGreifswaldGermany

Personalised recommendations