A Three-Dimensional Shape Description Algorithm Based on Polar-Fourier Transform for 3D Model Retrieval

  • Dariusz Frejlichowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


In the paper a new 3D shape representation algorithm is proposed — the Polar-Fourier 3D Shape Descriptor. Similarly to the Light Field Descriptor, the proposed method is based on rendering several two-dimensional projections of a 3D model, taken from various points of view. However, the proposed descriptor uses the 2D Polar-Fourier transform for obtained projections This enables the new descriptor to be more efficient in the recognition or retrieval of 3D models. In order to evaluate the performance of the algorithm, it was experimentally compared with four other popular approaches — the Extended Gaussian Image, Shape Distributions, Shape Histogram and Light Field Descriptor — in the problem of 3D shape retrieval. The achieved results have shown that the new method outperforms the other four explored ones. The presented 3D shape descriptor can be used in representation, recognition and retrieval of 3D models.


3D model retrieval 3D shape description Polar-Fourier transform 


  1. 1.
    Ikeuchi, K.: Generating an interpretation tree from a CAD model for 3D-object recognition in bin-picking tasks. International Journal of Computer Vision 1(2), 145–165 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lengyel, E.: Mathematics for 3D Game Programming and Computer Graphics, 2nd edn. Charles River Media (2003)Google Scholar
  3. 3.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-Invariant 3D Face Recognition. LNCS, vol. 2688, pp. 62–70 (2003)Google Scholar
  4. 4.
    Bober, M.: MPEG-7 Visual Shape Descriptors. IEEE Trans. on Circuits and Systems for Video Technology 11(6), 716–719 (2001)CrossRefGoogle Scholar
  5. 5.
    Horn, B.: Extended Gaussian Images. Proc. of the IEEE A.I. Memo, no. 740 72(12), 1671–1686 (1984)Google Scholar
  6. 6.
    Kang, S., Ikeuchi, K.: Determining 3-D Object Pose Using the Complex Extended Guassian Image. In: Proc. of the CVPR, pp. 580–585 (1991)Google Scholar
  7. 7.
    Novotni, M., Klein, R.: Shape Retrieval Using 3D Zernike Descriptors. Computer-Aided Design 36(11), 1047–1062 (2004)CrossRefGoogle Scholar
  8. 8.
    Ankerst, M., Kastenmuller, G., Kriegel, H., Seidl, T.: 3D Shape Histograms for Similarity Search and Classification in Spatial Databases. In: Proc. of the 6th Int. Symp. on Spatial Databases, pp. 207–226 (1999)Google Scholar
  9. 9.
    Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D Models with Shape Distributions. In: Proc. of Int. Conf. SMI 2008, pp. 154–166 (2001)Google Scholar
  10. 10.
    Mousa, M.-H., Chaine, R., Akkouche, S., Galin, E.: Toward an Efficient Triangle-Based Spherical Harmonics Representation of 3D Objects. Computer Aided Geometric Design 25(8), 561–575 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.L.: Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In: Proc. of the 28th Conference on Computer Graphics and Interactive Techniques, pp. 203–212 (2001)Google Scholar
  12. 12.
    Kazhdan, M., Chazelle, B., Dobkin, D., Funkhouser, T., Rusinkiewicz, S.: A Reflective Symmetry Descriptor for 3D Models. Algorithmica 38, 201–225 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Novatnack, J., Nishino, K.: Scale-Dependent/Invariant Local 3D Shape Descriptors for Fully Automatic Registration of Multiple Sets of Range Images. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 440–453. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Chen, D.-Y., Ouhyoung, M., Tian, X.-P., Shen, Y.-T.: On visual similarity based 3D model retrieval. Computer Graphics Forum, 223–232 (2003)Google Scholar
  15. 15.
    Frejlichowski, D.: 3D Shape Description Algorithms Applied to the Problem of Model Retrieval. Central European Journal of Engineering 1(1), 117–121 (2011)Google Scholar
  16. 16.
    Shilane, P., Min, P., Kazhdan, M. M., Funkhouser, T.A.: The Princeton Shape Benchmark. In: Proc. of the SMI 2004, Genova, Italy, pp. 145–156 (2004)Google Scholar
  17. 17.
    Kukharev, G., Kuzminski, A.: Biometric Techniques Part I - Face Recognition Methods. Szczecin University of Technology Press, Szczecin (2003) (in polish)Google Scholar
  18. 18.
    Min, P., Kazhdan, M., Funkhouser, T.: A Comparison of Text and Shape Matching for Retrieval of Online 3D Models. In: Heery, R., Lyon, L. (eds.) ECDL 2004. LNCS, vol. 3232, pp. 209–220. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Grana, C., Davolio, M., Cucchiara, R.: Similarity-Based Retrieval with MPEG-7 3D Descriptors: Performance Evaluation on the Princeton Shape Benchmark. In: Thanos, C., Borri, F., Candela, L. (eds.) Digital Libraries: Research and Development. LNCS, vol. 4877, pp. 308–317. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dariusz Frejlichowski
    • 1
  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology, SzczecinSzczecinPoland

Personalised recommendations