Advertisement

Using the Skeleton for 3D Object Decomposition

  • Luca Serino
  • Gabriella Sanniti di Baja
  • Carlo Arcelli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

An object decomposition method is presented, which is guided by a suitable partition of the skeleton. The method is easy to implement, has a limited computational cost and produces results in agreement with human intuition.

Keywords

Branch Point Spectral Cluster Adjacent Part Object Part Skeleton Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Palmer, S.E.: Hierarchical structure in perceptual representation. Cognitive Psychology 9, 441–474 (1977)CrossRefGoogle Scholar
  2. 2.
    Marr, D., Nishihara, H.K.: Representation and recognition of three-dimensional shapes. Proc. Royal Society of London: Series B 200, 269–294 (1978)CrossRefGoogle Scholar
  3. 3.
    Hoffman, D.D., Richards, W.A.: Parts of recognition. Cognition 18, 65–96 (1984)CrossRefGoogle Scholar
  4. 4.
    Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)CrossRefGoogle Scholar
  5. 5.
    Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. The Visual Computer 21(11), 945–955 (2005)CrossRefGoogle Scholar
  6. 6.
    Lien, J.-M., Geyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: Proc. 2006 ACM Symposium on Solid and Physical Modeling, pp. 219–228 (2006)Google Scholar
  7. 7.
    Reniers, D., Telea, A.: Skeleton-based hierarchical shape segmentation. In: Proc. IEEE Int. Conf. on Shape Modeling and Applications, pp. 179–188 (2007)Google Scholar
  8. 8.
    Serino, L., Sanniti di Baja, G., Arcelli, C.: Object decomposition via curvilinear skeleton partition. In: Proc. ICPR 2010, pp. 4081–4084. IEEE, Los Alamitos (2010)Google Scholar
  9. 9.
    Svensson, S., Sanniti di Baja, G.: Using distance transforms to decompose 3D discrete objects. Image and Vision Computing 20, 529–540 (2002)CrossRefGoogle Scholar
  10. 10.
    Zhang, X., Liu, J., Jaeger, M., Li, Z.: Volume decomposition for hierarchical skeletonization. Int. J. Virtual Reality 8(1), 89–97 (2009)Google Scholar
  11. 11.
    de Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. Computer Graphics Forum 27(5), 1349–1356 (2008)CrossRefGoogle Scholar
  12. 12.
    Liu, R., Zhang, H.: Segmentation of 3D meshes through spectral clustering. In: Proc. 12th Pacific Conf. on Computer Graphics and Applications, pp. 298–305 (2004)Google Scholar
  13. 13.
    Huang, Q.-X., Wicke, M., Adams, B., Guibas, L.: Shape decomposition using modal analysis. Computer Graphics Forum 28(2), 407–416 (2009)CrossRefGoogle Scholar
  14. 14.
    Bischoff, S., Kobbelt, L.: Ellipsoid decomposition of 3D models. In: Proc. Int. Symp. 3D Data Processing Visualization and Transmission, pp. 480–488 (2002)Google Scholar
  15. 15.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Proc. 9th ACM Symp. on Solid Modeling and Applications, pp. 339–344 (2004)Google Scholar
  16. 16.
    Borgefors, G.: On digital distance transform in three dimensions. CVIU 64(3), 368–376 (1996)Google Scholar
  17. 17.
    Blum, H.: Biological shape and visual science. J. Theor. Biol. 38, 205–287 (1973)CrossRefGoogle Scholar
  18. 18.
    Siddiqi, K., Pizer, S.M. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  19. 19.
    Arcelli, C., Sanniti di Baja, G., Serino, L.: Distance driven skeletonization in voxel images. IEEE Trans. PAMI, http://doi.ieeecomputersociety.org/10.1109/TPAMI.2010.140
  20. 20.
    Borgefors, G., Sanniti di Baja, G.: Analyzing non-convex 2D and 3D patterns. CVIU 63(1), 145–157 (1996)Google Scholar
  21. 21.
    AIM@SHAPE Shape Repository, http://shapes.aimatshape.net/viewmodels.php
  22. 22.
    Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton Shape Benchmark. Shape Modeling International, Genova, Italy (June 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Luca Serino
    • 1
  • Gabriella Sanniti di Baja
    • 1
  • Carlo Arcelli
    • 1
  1. 1.Istituto di Cibernetica "E.Caianiello"CNR, PozzuoliNaplesUSA

Personalised recommendations