Coherence Probe Microscopy Imaging and Analysis for Fiber-Reinforced Polymers

  • Verena Schlager
  • Stefan E. Schausberger
  • David Stifter
  • Bettina Heise
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


The potential of full-field low coherence interferometric techniques for imaging internal structures, such as fibers, interfaces, or inclusions in technical materials is demonstrated by our coherence probe microscopy (CPM) setup. However, the huge amount of recorded data demand for an automatized enhancement and evaluation of the image data. We propose an automatic image analysis procedure adapted for full-field coherence probe microscopy, which we tested on fiber composite materials. The performed image enhancement and orientation analysis finally allow to cluster the internal fiber structures, to detect outliers and enable an improved characterization of investigated specimens supporting a sophisticated material design for the future.


coherence probe microscopy fiber composites speckles orientation monogenic clustering 


  1. 1.
    Drexler, W., Fujimoto, J.G.: Optical coherence tomography. Springer, Berlin (2008)CrossRefGoogle Scholar
  2. 2.
    Dubois, A., Vabre, L., Boccara, A., Beaurepaire, E.: High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 805–812 (2002)CrossRefGoogle Scholar
  3. 3.
    Stifter, D.: Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography. Appl. Phys. 88, 337–357 (2007)CrossRefGoogle Scholar
  4. 4.
    Latour, G., Echard, J.P., Soulier, B., Emond, I., Vaiedelich, S., Elias, M.: Structural and optical properties of wood and wood finishes studied using optical coherence tomography. Appl. Optics 48, 6485–6491 (2009)CrossRefGoogle Scholar
  5. 5.
    Wiesauer, K., Pircher, M., Gotzinger, E., Hitzenberger, C.K., Engelke, R., Ahrens, G., Gruetzner, G., Stifter, D.: Transversal ultrahigh-resolution polarization-sensitive optical coherence tomography for strain mapping in materials. Optics Express 14, 5945–5953 (2006)CrossRefGoogle Scholar
  6. 6.
    Schausberger, S.E., Heise, B., Maurer, C., Bernet, S., Ritsch-Marte, M., Stifter, D.: Flexible contrast for low-coherence interference microscopy by Fourier-plane filtering with a SLM. Opt. Lett. 35, 4154–4156 (2010)CrossRefGoogle Scholar
  7. 7.
    Stifter, D., Leiss-Holzinger, E., Major, Z., Baumann, B., Pircher, M., Götzinger, E., Hitzenberger, C.K., Heise, B.: Dynamic optical studies in materials testing with spectral-domain polarization-sensitive OCT. Opt. Express 18, 25712–25725 (2010)CrossRefGoogle Scholar
  8. 8.
    Gallagher, N.C., Wise, G.L.: Median filters: a tutorial. In: Proc. IEEE ISCAS, vol. 88, pp. 1737–1744 (1988)Google Scholar
  9. 9.
    Candes, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast Discrete Curvelet Transform (2005)Google Scholar
  10. 10.
    Shensa, M.J.: The discrete wavelet transform: Wedding the Á trous and Mallat algorithms. IEEE Trans. Signal Proc. 40, 2464–2482 (1992)CrossRefzbMATHGoogle Scholar
  11. 11.
    Sternberg, S.R.: Biomedical image processing. Computer 16, 22–34 (1983)CrossRefGoogle Scholar
  12. 12.
    Held, S., Storath, M., Massopust, P., Forster, B.: Steerable wavelet frames based on the Riesz transform. IEEE Trans. Image Proc. 19, 653–667 (2010) ; Monogenic wavelet toolbox, MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jähne, B.: Digital Image Processing. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  14. 14.
    Movellan, J.R.: Tutorial on Gabor FiltersGoogle Scholar
  15. 15.
    Unser, M., Sage, D., Ville, D.V.D.: Multiresolution monogenic signal analysis using the Riesz-Laplace wavelet transform. IEEE Trans. Image Proc. 18, 2402–2418 (2009); MonogenicJ toolbox, MathSciNetCrossRefGoogle Scholar
  16. 16.
    Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Image Proc. 49, 3136–3144 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Verena Schlager
    • 1
  • Stefan E. Schausberger
    • 2
  • David Stifter
    • 2
  • Bettina Heise
    • 1
    • 2
  1. 1.Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Department of Knowledge-Based Mathematical Systems, FLLLJohannes Kepler University LinzLinzAustria
  2. 2.Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface- and Nanoanalytics, ZONAJohannes Kepler University LinzLinzAustria

Personalised recommendations