Supercontinuum Light Sources for Hyperspectral Subsurface Laser Scattering

Applications for Food Inspection
  • Otto Højager Attermann Nielsen
  • Anders Lindbjerg Dahl
  • Rasmus Larsen
  • Flemming Møller
  • Frederik Donbæk Nielsen
  • Carsten L. Thomsen
  • Henrik Aanæs
  • Jens Michael Carstensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


A materials structural and chemical composition influences its optical scattering properties. In this paper we investigate the use of subsurface laser scattering (SLS) for inferring structural and chemical information of food products. We have constructed a computer vision system based on a supercontinuum laser light source and an Acousto-Optic Tunable Filter (AOTF) to provide a collimated light source, which can be tuned to any wavelength in the range from 480 to 900 nm. We present the newly developed hyperspectral vision system together with a proof-of-principle study of its ability to discriminate between dairy products with either similar chemical or structural composition. The combined vision system is a new way for industrial food inspection allowing non-intrusive online process inspection of parameters that is hard with existing technology.


Vision System Hyperspectral Image Loglog Model Food Inspection Direct Digital Synthesizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carstensen, J.M., Møller, F.: Online monitoring of food processes using subsurface laser scattering. In: Advances in process analytics and control technologies APACT 2009, Glasgow, Scotland, ( May 5-7, 2009)Google Scholar
  2. 2.
    Chen, Y.R., Chao, K., Kim, M.S.: Machine vision technology for agricultural applications. Computers and Electronics in Agriculture 36(173A/191) (2002)Google Scholar
  3. 3.
    Clemmensen, L.H., Hansen, M.E., Ersbøll, B.K., Frisvad, J.C.: A method for comparison of growth media in objective identification of penicillium based on multi-spectral imaging. Journal of Microbiological Methods 69, 249–255 (2007)CrossRefGoogle Scholar
  4. 4.
    Dissing, B.S., Clemmesen, L.H., Lje, H., Ersbœll, B.K., Adler-Nissen, J.: Temporal reflectance changes in vegetables. In: 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1917–1922 (2010)Google Scholar
  5. 5.
    Fischer, P., Windhab, E.J.: Rheology of food materials. Current Opinion in Colloid & Interface Science (2010)Google Scholar
  6. 6.
    Gómez-Sanchís, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., Blasco, J.: Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering 89(1), 80–86 (2008)CrossRefGoogle Scholar
  7. 7.
    Gowen, A.A., O’Donnell, C.P., Cullen, P.J., Downey, G., Frias, J.M.: Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends in Food Science & Technology 18(12), 590–598 (2007)CrossRefGoogle Scholar
  8. 8.
    Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 511–518. ACM, New York (2001)Google Scholar
  9. 9.
    Joshi, N., Donner, C., Jensen, H.W.: Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination. Optics letters 31(7), 936–938 (2006)CrossRefGoogle Scholar
  10. 10.
    Kim, M.S., Chen, Y.R., Mehl, P.M.: Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Transactions of the ASAE 44(3), 721–729 (2001)Google Scholar
  11. 11.
    Nielsen, A.A.: Spectral mixture analysis: Linear and semi-parametric full and iterated partial unmixing in multi-and hyperspectral image data. Journal of Mathematical Imaging and Vision 15(1), 17–37 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Peng, Y., Lu, R.: An LCTF-based multispectral imaging system for estimation of apple fruit firmness. Part 2. Selection of optimal wavelengths and development of prediction models. Transactions of the ASAE 49(1), 269–275 (2006)CrossRefGoogle Scholar
  13. 13.
    Peng, Y., Lu, R.: Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biology and Technology 48(1), 52–62 (2008)CrossRefGoogle Scholar
  14. 14.
    Sacoto, P., Lanza, F., Suarez, H., Garcia-Rubio, L.H.: A novel automatic dilution system for on-line particle size analysis. In: ACS Symposium Series, vol. 693, pp. 23–29. ACS Publications (1998)Google Scholar
  15. 15.
    Sun, D.W.: Hyperspectral imaging for food quality analysis and control. Academic Press, London (2010)Google Scholar
  16. 16.
    van der Meer, F.: Imaging spectrometry for geological remote sensing. Geologie en Mijnbouw 77(2), 137–151 (1998)CrossRefGoogle Scholar
  17. 17.
    Wang, W., Paliwal, J.: Near-infrared spectroscopy and imaging in food quality and safety. Sensing and Instrumentation for Food Quality and Safety 1(4), 193–207 (2007)CrossRefGoogle Scholar
  18. 18.
    Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized Assorted Pixel Camera: Post-Capture Control of Resolution, Dynamic Range and Spectrum. Technical report (November 2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Otto Højager Attermann Nielsen
    • 1
  • Anders Lindbjerg Dahl
    • 1
  • Rasmus Larsen
    • 1
  • Flemming Møller
    • 2
  • Frederik Donbæk Nielsen
    • 3
  • Carsten L. Thomsen
    • 3
  • Henrik Aanæs
    • 1
  • Jens Michael Carstensen
    • 1
  1. 1.DTU InformaticsTechnical University of DenmarkDenmark
  2. 2.DANISCO A/SDenmark
  3. 3.NKT Photonics A/SDenmark

Personalised recommendations