Human 3D Motion Computation from a Varying Number of Cameras

  • Magnus Burenius
  • Josephine Sullivan
  • Stefan Carlsson
  • Kjartan Halvorsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)


This paper focuses on how the accuracy of marker-less human motion capture is affected by the number of camera views used. Specifically, we compare the 3D reconstructions calculated from single and multiple cameras. We perform our experiments on data consisting of video from multiple cameras synchronized with ground truth 3D motion, obtained from a motion capture session with a professional footballer. The error is compared for the 3D reconstructions, of diverse motions, estimated using the manually located image joint positions from one, two or three cameras. We also present a new bundle adjustment procedure using regression splines to impose weak prior assumptions about human motion, temporal smoothness and joint angle limits, on the 3D reconstruction. The results show that even under close to ideal circumstances the monocular 3D reconstructions contain visual artifacts not present in the multiple view case, indicating accurate and efficient marker-less human motion capture requires multiple cameras.


Motion Capture 3D Reconstruction Monocular Bundle Adjustment Regression Splines 


  1. 1.
    Lee, H.J., Chen, Z.: Determination of 3D human body postures from a single view. Computer Vision, Graphics, and Image Processing 30(2), 148–168 (1985) ISSN 0734-189X, doi:10.1016/0734-189X(85)90094-5CrossRefGoogle Scholar
  2. 2.
    Taylor, C.J.: Reconstruction of articulated objects from point correspondences in a single uncalibrated image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 677–684 (2000)Google Scholar
  3. 3.
    Eriksson, M., Carlsson, S.: Monocular reconstruction of human motion by qualitative selection. In: Proceedings of Sixth IEEE International Conference on Automatic Face and Gesture Recognition, May 17-19, pp. 863–868 (2004)Google Scholar
  4. 4.
    Parameswaran, V.: View independent human body pose estimation from a single perspective image. In: CVPR (2004)Google Scholar
  5. 5.
    Wei, X.K.: Jinxiang Chai: Modeling 3D human poses from uncalibrated monocular images. In: 2009 IEEE 12th International Conference on Computer Vision, September 29-October 2, pp. 1873–1880 (2009)Google Scholar
  6. 6.
    Sigal, L., Balan, A., Black, M.: HumanEva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion. International Journal of Computer Vision 87(1), 427 (2010)Google Scholar
  7. 7.
    Bo, L., Sminchisescu, C., Kanaujia, A., Metaxas, D.: Fast Algorithms for Large Scale Conditional 3D Prediction. In: IEEE International Conference on Computer Vision and Pattern Recognition (June 2008)Google Scholar
  8. 8.
    Shoemake, K.: Animating rotation with quaternion curves. SIGGRAPH (1985)Google Scholar
  9. 9.
    Baerlocher, P., Boulic, R.: Parametrization and Range of Motion of the Ball-and-Socket Joint (2000)Google Scholar
  10. 10.
    Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3, 29–48 (1998)CrossRefGoogle Scholar
  11. 11.
    Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Visio., 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  13. 13.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  14. 14.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision 9, 137–154 (1992)CrossRefGoogle Scholar
  15. 15.
    Quan, L.: Self-calibration of an Affine Camera from Multiple Views. International Journal of Computer Vision 19, 93–105 (1994)CrossRefGoogle Scholar
  16. 16.
    de Boor, C.: A Practical Guide to Splines. Springer, Heidelberg (1978)CrossRefzbMATHGoogle Scholar
  17. 17.
    Coleman, T.F., Li, Y.: An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM Journal on Optimization 6, 418–445 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Coleman, T.F., Li, Y.: On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds. Mathematical Programming 67(2), 189–224 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Dennis Jr., J.E.: Nonlinear Least-Squares. In: Jacobs, D. (ed.) State of the Art in Numerical Analysis, pp. 269–312. Academic Press, London (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Magnus Burenius
    • 1
  • Josephine Sullivan
    • 1
  • Stefan Carlsson
    • 1
  • Kjartan Halvorsen
    • 1
  1. 1.KTH CSC/CVAPStockholmSweden

Personalised recommendations