Using Fourier Descriptors and Spatial Models for Traffic Sign Recognition

  • Fredrik Larsson
  • Michael Felsberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

Traffic sign recognition is important for the development of driver assistance systems and fully autonomous vehicles. Even though GPS navigator systems works well for most of the time, there will always be situations when they fail. In these cases, robust vision based systems are required. Traffic signs are designed to have distinct colored fields separated by sharp boundaries. We propose to use locally segmented contours combined with an implicit star-shaped object model as prototypes for the different sign classes. The contours are described by Fourier descriptors. Matching of a query image to the sign prototype database is done by exhaustive search. This is done efficiently by using the correlation based matching scheme for Fourier descriptors and a fast cascaded matching scheme for enforcing the spatial requirements. We demonstrated on a publicly available database state of the art performance.

Keywords

Traffic sign recognition Fourier descriptors spatial models traffic sign dataset 

References

  1. 1.
    BMW Automobiles (2010), http://www.bmw.com/
  2. 2.
    German Traffic Sign Recognition Benchmark (2010), http://benchmark.ini.rub.de/
  3. 3.
    Saab (2010), http://www.saab.com/
  4. 4.
  5. 5.
    Fleyeh, H., Dougherty, M., Aenugula, D., Baddam, S.: Invariant Road Sign Recognition with Fuzzy ARTMAP and Zernike Moments. In: 2007 IEEE Intelligent Vehicles Symposium, pp. 31–36 (2007)Google Scholar
  6. 6.
    Garcia-Garrido, M., Sotelo, M., Martin-Gorostiza, E.: Fast Road Sign Detection Using Hough Transform for Assisted Driving of Road Vehicles. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005. LNCS, vol. 3643, pp. 543–548. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gavrila, D., Philomin, V.: Real-time object detection for ldquo;smart rdquo; vehicles. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 87–93 (1999)Google Scholar
  8. 8.
    Granlund, G.H.: Fourier Preprocessing for Hand Print Character Recognition. IEEE Trans. on Computers C–21(2), 195–201 (1972)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kuhl, F.P., Giardina, C.R.: Elliptic Fourier features of a closed contour. Computer Graphics and Image Processing 18, 236–258 (1982)CrossRefGoogle Scholar
  10. 10.
    Larsson, F., Felsberg, M., Per-Erik, F.: Correlating Fourier Descriptors of Local Patches for Road Sign Recognition. IET Computer Vision (2011) (accepted for publication)Google Scholar
  11. 11.
    Leibe, B., Leonardis, A., Schiele, B.: Robust Object Detection with Interleaved Categorization and Segmentation. International Journal of Computer Vision 77(1), 259–289 (2008), http://dx.doi.org/10.1007/s11263-007-0095-3 CrossRefGoogle Scholar
  12. 12.
    Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gomez-Moreno, H., Lopez-Ferreras, F.: Road-sign detection and recognition based on support vector machines. IEEE Trans. on Intelligent Transportation Systems 8(2), 264–278 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC. pp. 384–393 (2002)Google Scholar
  14. 14.
    Nguwi, Y.Y., Kouzani, A.Z.: Detection and classification of road signs in natural environments. Neural Comput. Appl. 17, 265–289 (2008)CrossRefGoogle Scholar
  15. 15.
    Oppenheim, A., Lim, J.: The importance of phase in signals. Proc. of the IEEE 69(5), 529–541 (1981)CrossRefGoogle Scholar
  16. 16.
    Papoulis, A.: The Fourier Integral and its Applications. McGraw-Hill, New York (1962)MATHGoogle Scholar
  17. 17.
    Persoon, E., Fu, K.S.: Shape discrimination using fourier descriptors. IEEE Transactions on Systems, Man and Cybernetics 7(3), 170–179 (1977)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, Q., Kamata, S.: Automatic road sign detection method based on Color Barycenters Hexagon model. In: ICPR 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fredrik Larsson
    • 1
  • Michael Felsberg
    • 1
  1. 1.Computer Vision LaboratoryLinköping UniversityLinköpingSweden

Personalised recommendations