Unscented Kalman Filtering for Articulated Human Tracking

  • Anders Boesen Lindbo Larsen
  • Søren Hauberg
  • Kim Steenstrup Pedersen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

We present an articulated tracking system working with data from a single narrow baseline stereo camera. The use of stereo data allows for some depth disambiguation, a common issue in articulated tracking, which in turn yields likelihoods that are practically unimodal. While current state-of-the-art trackers utilize particle filters, our unimodal likelihood model allows us to use an unscented Kalman filter. This robust and efficient filter allows us to improve the quality of the tracker while using substantially fewer likelihood evaluations. The system is compared to one based on a particle filter with superior results. Tracking quality is measured by comparing with ground truth data from a marker-based motion capture system.

Keywords

Joint Angle Likelihood Model Unscented Kalman Filter Stereo Camera Observation Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Poppe, R.: Vision-based human motion analysis: An overview. Computer Vision and Image Understanding 108, 4–18 (2007)CrossRefGoogle Scholar
  2. 2.
    Hauberg, S., Lapuyade, J., Engell-Nørregård, M., Erleben, K., Steenstrup Pedersen, K.: Three dimensional monocular human motion analysis in end-effector space. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 235–248. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Deutscher, J., Blake, A., Reid, I.: Articulated body motion capture by annealed particle filtering. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 126–133. IEEE Comput. Soc, Los Alamitos (2000)Google Scholar
  4. 4.
    Bandouch, J., Beetz, M.: Tracking humans interacting with the environment using efficient hierarchical sampling and layered observation models. In: IEEE International Workshop on Human-Computer Interaction, vol. 2 (2009)Google Scholar
  5. 5.
    Kjellström, H., Kragić, D., Black, M.J.: Tracking people interacting with objects. In: CVPR 2010: Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  6. 6.
    Hauberg, S., Sommer, S., Pedersen, K.S.: Gaussian-like spatial priors for articulated tracking. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 425–437. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Julier, S., Uhlmann, J.: A new extension of the Kalman filter to nonlinear systems. In: Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, vol. 3, p. 26 (1997)Google Scholar
  8. 8.
    Wan, E., Van Der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Proceedings of Symposium, pp. 153–158 (2000)Google Scholar
  9. 9.
    Lu, Z., Carreira-Perpinan, M., Sminchisescu, C.: People Tracking with the Laplacian Eigenmaps Latent Variable Model. In Platt, J., Koller, D., Singer, Y., Roweis, S., eds.: Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA (2008) 1705–1712Google Scholar
  10. 10.
    Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Elgammal, A.M., Lee, C.S.: Tracking People on a Torus. IEEE Transaction on Pattern Analysis and Machine Intelligence 31, 520–538 (2009)CrossRefGoogle Scholar
  12. 12.
    Urtasun, R., Fleet, D.J., Hertzmann, A., Fua, P.: Priors for people tracking from small training sets. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 403–410 (2005)Google Scholar
  13. 13.
    Loy, G., Eriksson, M., Sullivan, J., Carlsson, S.: Monocular 3D reconstruction of human motion in long action sequences. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 442–455. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Sminchisescu, C., Triggs, B.: Kinematic Jump Processes for Monocular 3D Human Tracking. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 69–76 (2003)Google Scholar
  15. 15.
    Ziegler, J., Nickel, K., Stiefelhagen, R.: Tracking of the articulated upper body on multi-view stereo image sequences. In: CVPR 2006: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 774–781. IEEE Computer Society, Washington, DC, USA (2006)Google Scholar
  16. 16.
    Stenger, B., Mendonca, P.R.S., Cipolla, R.: Model-based hand tracking using an unscented kalman filter. In: Proc. British Machine Vision Conference, vol. I, pp. 63–72 (2001)Google Scholar
  17. 17.
    Cappé, O., Godsill, S., Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo. Proceedings of the IEEE 95, 899–924 (2007)CrossRefGoogle Scholar
  18. 18.
    Balan, A.O., Sigal, L., Black, M.J.: A Quantitative Evaluation of Video-based 3D Person Tracking. In: Proceedings of the 14th International Conference on Computer Communications and Networks, pp. 349-356. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  19. 19.
    Bandouch, J., Engstler, F., Beetz, M.: Accurate human motion capture using an ergonomics-based anthropometric human model. In: Proc. of the 5th Int. Conf. on Articulated Motion and Deformable Objects, pp. 248–258. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anders Boesen Lindbo Larsen
    • 1
  • Søren Hauberg
    • 1
  • Kim Steenstrup Pedersen
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenDenmark

Personalised recommendations