Advertisement

Triangulating a Plane

  • Carl Olsson
  • Anders Eriksson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

In this theoretical paper we consider the problem of accurately triangulating a scene plane. Rather than first triangulating a set of points and then fitting a plane to these points, we try to minimize the back-projection errors as functions of the plane parameters directly. As this is both geometrically and statistically meaningful our method performs better than the standard two step procedure. Furthermore, we show that the error residuals of this formulation are quasiconvex thereby making it very easy to solve using for example standard local optimization methods.

References

  1. 1.
    Bartoli, A., Sturm, P.: Constrained structure and motion from multiple uncalibrated views of a piecewise planar scene. International Journal of Computer Vision 52(1) (2003)Google Scholar
  2. 2.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)CrossRefGoogle Scholar
  4. 4.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. Assoc. Comp. Mach. 24, 381–395 (1981)MathSciNetGoogle Scholar
  5. 5.
    Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: Proc. Int. Conf. on Computer Vision, Kyoto, Japan (2009)Google Scholar
  6. 6.
    Hartley, R., Seo, Y.: Verifying global minima for L2 minimization problems. In: Conf. Computer Vision and Pattern Recognition, Anchorage, USA (2008)Google Scholar
  7. 7.
    Hartley, R., Sturm, P.: Triangulation. Computer Vision and Image Understanding 68(2), 146–157 (1997)CrossRefGoogle Scholar
  8. 8.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kahl, F., Hartley, R.: Multiple view geometry under the L1-norm. IEEE Trans. Pattern Analysis and Machine Intelligence 30(9), 1603–1617 (2008)Google Scholar
  10. 10.
    Kanatani, K., Niitsuma, H.: Optimal two-view planar scene triangulation. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 242–253. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Kanazawa, Y., Kenichi, K.: Direct reconstruction of planar surfaces by stereo vision. IEICE Transactions on Information and Systems, E78-D(7) (1995)Google Scholar
  12. 12.
    Ke, Q., Kanade, T.: Quasiconvex optimization for robust geometric reconstruction. IEEE Trans. Pattern Analysis and Machine Intelligence 29(10), 1834–1847 (2007)CrossRefGoogle Scholar
  13. 13.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Li, H.: A practical algorithm for L ∞  triangulation with outliers. In: Conf. Computer Vision and Pattern Recognition, Minneapolis, USA (2007)Google Scholar
  15. 15.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal Computer Vision (2004)Google Scholar
  16. 16.
    Olsson, C., Enqvist, O., Kahl, F.: A polynomial-time bound for matching and registration with ouliers. In: Conf. Computer Vision and Pattern Recognition, Anchorage, USA (2008)Google Scholar
  17. 17.
    Olsson, C., Eriksson, A., Hartley, R.: Outlier removal using duality. In: Conf. Computer Vision and Pattern Recognition, San Francisco, USA (2010)Google Scholar
  18. 18.
    Olsson, C., Kahl, F.: Generalized convexity in multiple view geometry. J. Math. Imaging Vis. 38(1), 35–51 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Olsson, C., Kahl, F., Hartley, R.: Projective least-squares: Global solutions with local optimization. In: Conf. Computer Vision and Pattern Recognition, Miami, USA (2009)Google Scholar
  20. 20.
    Seo, Y., Hartley, R.: A fast method to minimize L ∞  error norm for geometric vision problems. In: Int. Conf. Computer Vision, Rio de Janeiro, Brazil (2007)Google Scholar
  21. 21.
    Sim, K., Hartley, R.: Removing outliers using the L ∞ -norm. In: Conf. Computer Vision and Pattern Recognition, New York City, USA, pp. 485–492 (2006)Google Scholar
  22. 22.
    Woodford, O., Torr, P., Reid, I., Fitzgibbon, A.: Global stereo reconstruction under second order smoothness priors. Proc. IEEE Trans. Pattern Analysis and Machine Intelligence 31, 2115–2128 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Carl Olsson
    • 1
  • Anders Eriksson
    • 2
  1. 1.Centre for Mathematical SciencesLund UniversitySweden
  2. 2.School of Computer ScienceUniversity of AdelaideAustralia

Personalised recommendations