Advertisement

Mobile Visual Search from Dynamic Image Databases

  • Xi Chen
  • Markus Koskela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

Mobile phones with integrated digital cameras provide new ways to get access to digital information and services. Images taken by the mobile phone camera can be matched to a database of objects or scenes, which enables linking of digital information to the physical world. In this paper, we describe our method for mobile image recognition, which is a part of a pilot system for linking of magazine page images to additional digital content. Such magazine databases are highly dynamic, so the recognition method needs to support addition and deletion of images without rebuilding the whole database. Meanwhile we significantly reduce the memory cost in the system without sacrificing retrieval accuracy. We present recognition results with two different databases.

Keywords

image recognition mobile visual search mobile augmented reality 

References

  1. 1.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Chandrasekhar, V., Chen, D.M., Lin, A.L., Takacs, G., Tsai, S.S., Cheung, N.M., Reznik, Y., Grzeszczuk, R., Girod, B.: Comparison of local feature descriptors for mobile visual search. In: IEEE International Conference on Image Processing (ICIP). Hong Kong (September 2010)Google Scholar
  3. 3.
    Chen, D., Tsai, S., Vedantham, R., Grzeszczuk, R., Girod, B.: Streaming mobile augmented reality on mobile phones. In: Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR 2009). Orlando, Florida (October 2009)Google Scholar
  4. 4.
    Chen, X., Koskela, M., Hyväkkä, J.: Image based information access for mobile phones. In: Proceedings of 8th International Workshop on Content-Based Multimedia Indexing, Grenoble, France (June 2010)Google Scholar
  5. 5.
    El Choubassi, M., Nestares, O., Wu, Y., Kozintsev, I., Haussecker, H.: An augmented reality tourist guide on your mobile devices. In: Boll, S., Tian, Q., Zhang, L., Zhang, Z., Chen, Y.-P.P. (eds.) MMM 2010. LNCS, vol. 5916, pp. 588–602. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logaritmic expected time. ACM Transactions on Mathematical Software 3(3), 209–226 (1977)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of 25th International Conference on Very Large Data Bases (VLDB 1999), pp. 518–529. Edinburgh, Scotland, UK (September 1999)Google Scholar
  9. 9.
    Kähäri, M., Murphy, D.: MARA – Sensor based augmented reality system for mobile imaging. In: Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR 2006), Santa Barbara, CA (October 2006)Google Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP 2009), Lisboa, Portugal (February 2009)Google Scholar
  12. 12.
    Nistér, D., Stewénius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of IEEE CVPR 2006, vol. 2, pp. 2161–2168 (2006)Google Scholar
  13. 13.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (June 2007)Google Scholar
  14. 14.
    Philbin, J., Isard, M., Sivic, J., Zisserman, A.: Descriptor learning for efficient retrieval. In: Daniilidis, K. (ed.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 677–691. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Shao, H., Svoboda, T., van Gool, L.: ZuBuD - Zurich buildings database for image based recognition. Tech. Rep. 260, ETH Zurich (April 2006)Google Scholar
  16. 16.
    Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor matching. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  17. 17.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proc. of ICCV 2003, vol. 2, pp. 1470–1477 (October 2003)Google Scholar
  18. 18.
    Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.C., Bismpigiannis, T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In: Proceeding of the 1st ACM International Conference on Multimedia Information Retrieval (MIR 2008), Vancouver, British Columbia, Canada, pp. 427–434 (2008)Google Scholar
  19. 19.
    Tsai, S.S., Chen, D., Chandrasekhar, V., Takacs, G., Cheung, N.M., Vedantham, R., Grzeszczuk, R., Girod, B.: Mobile product recognition. In: ACM Multimedia (ACM MM), Florence, Italy (October 2010)Google Scholar
  20. 20.
    Zhang, W., Kosecka, J.: Hierarchical building recognition. Image and Vision Computing 25(5), 704–716 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xi Chen
    • 1
  • Markus Koskela
    • 1
  1. 1.Department of Information and Computer ScienceAalto University School of ScienceEspooFinland

Personalised recommendations