Advertisement

Real Time Surface Registration for PET Motion Tracking

  • Jakob Wilm
  • Oline V. Olesen
  • Rasmus R. Paulsen
  • Liselotte Højgaard
  • Bjarne Roed
  • Rasmus Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

Head movement during high resolution Positron Emission Tomography brain studies causes blur and artifacts in the images. Therefore, attempts are being made to continuously monitor the pose of the head and correct for this movement. Specifically, our method uses a structured light scanner system to create point clouds representing parts of the patient’s face. The movement is estimated by a rigid registration of the point clouds. The registration should be done using a robust algorithm that can handle partial overlap and ideally operate in real time. We present an optimized Iterative Closest Point algorithm that operates at 10 frames per second on partial human face surfaces.

Keywords

motion tracking registration ICP 

References

  1. 1.
    Ter-Pogossian, M.M., Phelps, M.E., Hoffman, E.J., Mullani, N.A.: A Positron-Emission Transaxial Tomograph for Nuclear Imaging (PETT). Radiology 114, 89–98 (1975)CrossRefGoogle Scholar
  2. 2.
    Olesen, O.V., Sibomana, M., Keller, S.H., Andersen, F., Jensen, J., Holm, S., Svarer, C., Højgaard, L.: Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction. In: Nuclear Science Symposium Conference Record 2009, pp. 3789–3790 (2009)Google Scholar
  3. 3.
    Dinelle, K., Blinder, S., Cheng, J.C., Lidstone, S., Buckley, K., Ruth, T.J., Sossi, V.: Investigation of Subject Motion Encountered During a Typical Positron Emission Tomography Scan. In: Nuclear Science Symposium Conference Record 2006, pp. 3283–3287 (2006)Google Scholar
  4. 4.
    Green, M.V., Seidel, J., Stein, S.D., Tedder, T.E., Kempner, K.M., Kertzman, C., Zeffiro, T.A.: Head Movement in Normal Subjects During Simulated PET Brain Imaging with and without Head Restraint. Journal of Nuclear Medicine 35(9), 1538–1546 (1994)Google Scholar
  5. 5.
    Rahmim, A.: Advanced Motion Correction Methods in PET. Iranian Journal of Nuclear Medicine 13(24), 1–17 (2005)Google Scholar
  6. 6.
    Anton-Rodriguez, J.M., Sibomana, M., Walker, M.D., Huisman, M.C., Matthews, J.C., Feldmann, M., Keller, S.H., Asselin, M.: Investigation of Motion Induced Errors in Scatter Correction for the HRRT Brain Scanner (to appear)Google Scholar
  7. 7.
    Olesen, O.V., Jørgensen, M.R., Paulsen, R.R., Højgaard, L., Roed, B., Larsen, R.: Structured Light 3D Tracking System for Measuring Motions in PET Brain Imaging. In: Proceedings of SPIE 7625 76250X (2010)Google Scholar
  8. 8.
    Chen, Y., Medioni, G.: Object Modeling by Registration of Multiple Range Images. In: 1991 IEEE International Conference on Robotics and Automation, vol. 3, pp. 2724–2729 (1991)Google Scholar
  9. 9.
    Besl, P.J., McKay, N.D.: A Method for Registration of 3-D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  10. 10.
    Rusinkiewicz, S., Levoy, M.: Efficient Variants of the ICP Algorithm. In: Third International Conference on 3-D Digital Imaging and Modeling, p. 145 (2001)Google Scholar
  11. 11.
    Turk, G., Levoy, M.: Zippered Polygon Meshes from Range Images. In: ACM SIGGRAPH 1994, pp. 311–318 (1994)Google Scholar
  12. 12.
    Finkel, R.A., Bentley, J.L.: Quad Trees A Data Structure for Retrieval on Composite Keys. Acta Informatica 4(1), 1–9 (1974)CrossRefzbMATHGoogle Scholar
  13. 13.
    Friedman, J.H., Bentley, J.L., Finkel, R.A.: An Algorithm for Finding Best Matches in Logarithmic Expected Time. ACM Transactions on Mathematical Software 3(3), 209–226 (1977)CrossRefzbMATHGoogle Scholar
  14. 14.
    Greenspan, M., Yurick, M.: Approximate K-D Tree Search for Efficient ICP. In: Fourth International Conference on 3-D Digital Imaging and Modeling, 3DIM 2003, pp. 442–448 (2003)Google Scholar
  15. 15.
    Arya, S., Mount, D.: ANN: A Library for Approximate Nearest Neighbor Searching. In: 2nd CGC Workshop on Computational Geometry (1997)Google Scholar
  16. 16.
    Nüchter, A., Lingemann, K., Hertzberg, J.: Cached k-d tree search for ICP algorithms. In: Sixth International Conference on 3-D Digital Imaging and Modeling, 3DIM 2007, pp. 419–426 (2007)Google Scholar
  17. 17.
    Paulsen, R.R., Larsen, R.: Anatomically Plausible Surface Alignment and Reconstruction. In: Proceedings of Theory and Practice of Computer Graphics 2010, Eurographics UK (2010)Google Scholar
  18. 18.
    Paulsen, R.R., Bærentzen, J.A., Larsen, R.: Markov Random Field Surface Reconstruction. IEEE Transactions on Visualization and Computer Graphics, 636–646 (2009)Google Scholar
  19. 19.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A 4(4), 629–642 (1987)CrossRefGoogle Scholar
  20. 20.
    Horn, B.K.P., Hilden, H.M., Negahdaripour, S.: Closed-form solution of absolute orientation using orthonormal matrices. Journal of the Optical Society of America A 5(7), 1127–1135 (1988)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Arun, K.S., Huang, T.S., Blostein, S.D.: Least-Squares Fitting of Two 3-D Point Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(5), 698–700 (1987)CrossRefGoogle Scholar
  22. 22.
    Pauly, M., Gross, M., Kobbelt, L.P.: Efficient Simplification of Point-Sampled Surfaces. In: IEEE Visualization, VIS 2002, pp. 163–170 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jakob Wilm
    • 1
  • Oline V. Olesen
    • 1
    • 2
    • 3
  • Rasmus R. Paulsen
    • 1
  • Liselotte Højgaard
    • 2
  • Bjarne Roed
    • 3
  • Rasmus Larsen
    • 1
  1. 1.Informatics and Mathematical ModellingTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Department of Clinical Physiology, Nuclear Medicine & PET, RigshospitaletCopenhagen University Hospital, University of CopenhagenDenmark
  3. 3.Siemens Healthcare, Siemens A/SDenmark

Personalised recommendations