Advertisement

Camera Self-calibration with Parallel Screw Axis Motion by Intersecting Imaged Horopters

  • Ferran Espuny
  • Joan Aranda
  • José I. Burgos Gil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6688)

Abstract

We present a closed-form method for the self-calibration of a camera (intrinsic and extrinsic parameters) from at least three images acquired with parallel screw axis motion, i.e. the camera rotates about parallel axes while performing general translations. The considered camera motion is more general than pure rotation and planar motion, which are not always easy to produce. The proposed solution is nearly as simple as the existing for those motions, and it has been evaluated by using both synthetic and real data from acquired images.

References

  1. 1.
    Armstrong, M., Zisserman, A., Hartley, R.I.: Self-calibration from image triplets. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, Springer, Heidelberg (1996)Google Scholar
  2. 2.
    Demirdjian, D., Csurka, G., Horaud, R.: Autocalibration in the presence of critical motions. In: Proc. BMVC (1998)Google Scholar
  3. 3.
    Demirdjian, D., Zisserman, A., Horaud, R.: Stereo autocalibration from one plane. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 625–639. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Engels, C., Stewénius, H., Nistér, D.: Bundle adjustment rules. In: PCV (2006)Google Scholar
  5. 5.
    Espuny, F.: A new linear method for camera self-calibration with planar motion. J. Math. Imag. Vis. 27(1), 81–88 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Faugeras, O., Luong, Q.T., Papadopoulou, T.: The Geometry of Multiple Images: The Laws That Govern The Formation of Images of A Scene and Some of Their Applications. MIT Press, Cambridge (2001)zbMATHGoogle Scholar
  7. 7.
    Faugeras, O., Quan, L., Sturm, P.: Self-calibration of a 1D projective camera and its application to the self-calibration of a 2D projective camera. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, p. 36. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Habed, A., Boufama, B.: Camera self-calibration: A new approach for solving the modulus constraint. In: Proc. ICPR (2004)Google Scholar
  9. 9.
    Hartley, R.I.: Self-calibration from multiple views with a rotating camera. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Hartley, R.I., de Agapito, L., Reid, I.D., Hayman, E.: Camera calibration and the search for infinity. In: Proc. ICCV (1999)Google Scholar
  11. 11.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Knight, J., Zisserman, A., Reid, I.: Linear auto-calibration for ground plane motion. In: Proc. CVPR (2003)Google Scholar
  13. 13.
    Manning, R.A., Dyer, C.R.: Stratified self calibration from screw-transform manifolds. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 131–145. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Pollefeys, M., Van Gool, L., Oosterlinck, A.: The modulus constraint: A new constraint for self-calibration. In: Proc. ICPR (1996)Google Scholar
  15. 15.
    Ronda, J.I., Valdés, A., Jaureguizar, F.: Camera autocalibration and horopter curves. Int. J. Comput. Vis. 57(3), 219–232 (2004)CrossRefGoogle Scholar
  16. 16.
    Schaffalitzky, F.: Direct solution of modulus constraints. In: Proc. ICVGIP (2000)Google Scholar
  17. 17.
    Sturm, P.: Critical motion sequences for monocular self-calibration and uncalibrated Euclidean reconstruction. In: Proc. CVPR (1997)Google Scholar
  18. 18.
    Sturm, P., Maybank, S.J.: On plane-based camera calibration: A general algorithm, singularities, applications. In: Proc. CVPR (1999)Google Scholar
  19. 19.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proc. ICCV (1999)Google Scholar
  20. 20.
    Zisserman, A., Liebowitz, D., Armstrong, M.: Resolving ambiguities in auto-calibration. Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci. 356(1740), 1193–1211 (1998)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ferran Espuny
    • 1
  • Joan Aranda
    • 2
  • José I. Burgos Gil
    • 3
  1. 1.Dépt. Images et SignalGIPSA-Lab, Grenoble-INPFrance
  2. 2.Dept. of Automatic Control and Computing EngineeringUPCSpain
  3. 3.Instituto de Ciencias MatemáticasCSIC-UAM-UCM-UC3Spain

Personalised recommendations