Skip to main content

A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2011)

Abstract

Airborne LiDAR (Light Detection and Ranging) has become an excellent tool for accurately assessing vegetation characteristics in forest environments. Previous studies showed empirical relationships between LiDAR and field-measured biophysical variables. Multiple linear regression (MLR) with stepwise feature selection is the most common method for building estimation models. Although this technique has provided very interesting results, many other data mining techniques may be applied. The overall goal of this study is to compare different methodologies for assessing biomass fractions at stand level using airborne LiDAR data in forest settings. In order to choose the best methodology, a comparison between two different feature selection techniques (stepwise selection vs. genetic-based selection) is presented. In addition, classical MLR is also compared with regression trees (M5P). The results when each methodology is applied to estimate stand biomass fractions from an area of northern Spain show that genetically-selected M5P obtains the best results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Popescu, S.C.: Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy 31, 646–655 (2007)

    Article  Google Scholar 

  2. Naesset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltomo, M., Nilsson, M., Olsson, H., Pearsson, A., Söderman, U.: Laser scanning of forest resources: the nordic experience. Scand. J. Forest. Res. 19, 482–499 (2004)

    Google Scholar 

  3. Hall, S., Burke, I., Box, D., Kaufmann, M., Stoker, J.: Estimating stand structure using discrete-return lidar: an example from low density, ¯re prone ponderosa pine forests. Forest. Ecol. Manag. 208, 189–209 (2005)

    Article  Google Scholar 

  4. Lovell, J., Jupp, D., Newnham, G., Coops, N., Culvenor, D.: Simulation study for finding optimal lidar acquisition parameters for forest height retrieval. Forest Ecol. Manag. 214, 398–412 (2005)

    Article  Google Scholar 

  5. Anderson, J.E., Plourde, L.C., Martin, M.E., Braswell, B.H., Smith, M.L., Dubayah, R.O., Hofton, M.A., Blair, J.B.: Integrating waveform lidar with hy- perspectral imagery for inventory of a northern temperate forest. Remote Sensing of Environment 112(4), 1856–1870 (2008)

    Article  Google Scholar 

  6. Garcia, M., Riano, D., Chuvieco, E., Danson, F.M.: Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment 114(4), 816–830 (2010)

    Article  Google Scholar 

  7. Mutlu, M., Popescu, S.C., Stripling, C., Spencer, T.: Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sensing of Environment 112(1), 274–285 (2008)

    Article  Google Scholar 

  8. Muss, J.D., Mladeno, D.J., Townsend, P.A.: A pseudo-waveform technique to assess forest structure using discrete lidar data. Remote Sensing of Environment (2010) (in Press)

    Google Scholar 

  9. Salas, C., Ene, L., Gregoire, T.G., N½sset, E., Gobakken, T.: Modelling tree diameter from airborne laser scanning derived variables: A comparison of spatial statistical models. Remote Sensing of Environment 114(6), 1277–1285 (2010)

    Article  Google Scholar 

  10. Gong, B., Im, J., Mountrakis, G.: An artificial immune network approach to multi- sensor land use/land cover classification. Remote Sensing of Environment 115(2), 600–614 (2011)

    Article  Google Scholar 

  11. Latifi, H., Nothdurft, A., Koch, B.: Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 83(4), 395–407 (2010)

    Article  Google Scholar 

  12. Quinlan, R.J.: Learning with continuous classes. In: 5th Australian Joint Conference on Artificial Intelligence, pp. 343–348 (1992)

    Google Scholar 

  13. González-Ferreiro, E., Diéguez-Aranda, U., Gonçalves-Seco, L., Crecente, R., Miranda, D.: Assessing biomass in Eucalyptus globulus plantations in Galicia using different LiDAR sampling densities. In: Miranda, D., Suárez, J., Crecente, R. (eds.) Proceedings of ForestSat 2010: 4th international conference on Operational tools in forestry using remote sensing techniques, Lugo, Spain, September 6-10, pp. 37–41 (2010)

    Google Scholar 

  14. Antonarakis, A., Richards, K., Brasington, J.: Object-based land cover classification using airborne LIDAR. Remote Sensing of Environment (112), 2988–2998 (2008)

    Article  Google Scholar 

  15. Hudak, A.T., Crookston, N.L., Evans, J.S., Halls, D.E., Falkowski, M.J.: Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LIDAR data. Remote Sensing of Environment 112, 2232–2245 (2008)

    Article  Google Scholar 

  16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations 11(1) (2009)

    Google Scholar 

  17. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  18. Zar, J.: Biostatistical Analysis. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  19. Trujillo-Ortiz, A., Hernandez-Walls, R.: DagosPtest: D’Agostino-Pearson’s K2 test for assessing normality of data using skewness and kurtosis. A MATLAB file (2003)

    Google Scholar 

  20. Cardillo, G.: Wilcoxon test: non parametric wilcoxon test for paired samples (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

García-Gutiérrez, J., González-Ferreiro, E., Mateos-García, D., Riquelme-Santos, J.C., Miranda, D. (2011). A Comparative Study between Two Regression Methods on LiDAR Data: A Case Study. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds) Hybrid Artificial Intelligent Systems. HAIS 2011. Lecture Notes in Computer Science(), vol 6679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21222-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21222-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21221-5

  • Online ISBN: 978-3-642-21222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics