Skip to main content

An Improved Competitive Algorithm for One-Dimensional Incremental Median Problem

  • Conference paper
Frontiers in Algorithmics and Algorithmic Aspects in Information and Management

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6681))

  • 691 Accesses

Abstract

The incremental median problem consists of finding an incremental sequence of facility sets F 1 ⊆ F 2 ⊆ ⋯ ⊆ F n , where each F k contains at most k facilities. We say that this incremental medians sequence is c-competitive if the cost of each F k is at most c times of the optimum cost of k-median problem. The smallest such c is called the competitive ratio. A particular case of the problem is considered in this paper: both the clients and facilities are located on the real line. [5] and [14] presented a polynomial-time algorithm for this one-dimensional case that computes an incremental sequence with competitive ratio 8. The best algorithm available has competitive ratio \((1+\sqrt{2})^2\approx 5.83\)[19]. In this paper we give an improved polynomial-time algorithm with competitive factor 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Raghavan, P., Rao, S.: Approximation schemes for Euclidean k-medians and related problems. In: STOC 1998, pp. 106–113 (1998)

    Google Scholar 

  2. Arya, V., Garg, N., Khandekar, R., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. In: STOC 2001, pp. 21–29 (2001)

    Google Scholar 

  3. Brandeau, M.L., Chiu, S.S.: An overview of representative problems in location research. Management Science 35(6), 645–674 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chrobak, M., Hurand, M.: Better bounds for incremental medians. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 207–217. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Chrobak, M., Kenyon, C., Young, N.E.: Oblivious medians via online bidding. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 311–322. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Daskin, M. (ed.): Network and Discrete Location. Wiley, New York (1995)

    MATH  Google Scholar 

  7. Drezner, Z. (ed.): Facility Location: A Survey of Applications and Methods. Springer, New York (1995)

    Google Scholar 

  8. Drezner, Z., Hamacher, H. (eds.): Facility Location: Applications and Theory. Springer, Berlin (2002)

    MATH  Google Scholar 

  9. Goldman, A.J.: Optimal center location in simple networks. Transportation Science 5, 212–221 (1971)

    Article  MathSciNet  Google Scholar 

  10. Goldman, A.J., Witzgall, C.J.: A localization theorem for optimal facility location. Transportation Science 4, 406–409 (1970)

    Article  MathSciNet  Google Scholar 

  11. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of Algorithms 31, 228–248 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the real line. Operations Research Letters 10, 395–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jain, K., Mahdian, M., Saberi, A.: A new greedy approach for facility location problems. In: STOC 2002, pp. 731–740 (2002)

    Google Scholar 

  14. Lin., G.L., Nagarajan, C., Rajamaran, R., Williamson, D.P.: A general approach for incremental approximation and hierarchical clustering. In: SODA 2002. ACM/SIAM (2006)

    Google Scholar 

  15. Lin, J.H., Vitter, J.S.: ε-approximations with minimum packing constraint violation. In: STOC 1992, pp. 771–782 (1992)

    Google Scholar 

  16. Love, R.F., Morris, J.G., Wesolowsky, G.O. (eds.): Facilities Location: Models and Methods. North Holland, New York (1988)

    MATH  Google Scholar 

  17. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal of Computing 32(3), 816–832 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mirchandani, P., Francis, R. (eds.): Discrete location theory. Wiley Interscience, Hoboken (1990)

    MATH  Google Scholar 

  19. Shenmaier, V.V.: An Approximate Solution Algorithm for the One-Dimensional Online Median Problem. Journal of Applied and Industrial Mathematics 2(3), 421–425 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dai, W., Feng, Y. (2011). An Improved Competitive Algorithm for One-Dimensional Incremental Median Problem. In: Atallah, M., Li, XY., Zhu, B. (eds) Frontiers in Algorithmics and Algorithmic Aspects in Information and Management. Lecture Notes in Computer Science, vol 6681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21204-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21204-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21203-1

  • Online ISBN: 978-3-642-21204-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics