Skip to main content

Enzymatic Activity and Carbon Mineralization in Mexican Tepetates Cultivated Under Different Management Practices

  • Chapter
  • First Online:
Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

  • 1127 Accesses

Abstract

Tepetates (hardened volcanic tuffs) occupy large extensions in the Central Mexican Highlands and some of them have been modified for agriculture. In their native condition tepetates contain traces of C, N, and available P. The objective of this work was to study how different agricultural practices affect the labile organic C availability and the enzymatic activity in cultivated tepetates. Experimental plots, cultivated since 1986, were subjected to three agricultural management systems during 2002–2005: Traditional (Tt); Improved (Ti); and Organic (To). In 2002 two new plots were subjected to the traditional system (Rt), and organic system (Ro). Two non-cultivated tepetates were chosen as reference (Tv and Td). In 2005 soil samples were collected at 0–10 cm depth and soil organic C (SOC), total N (Nt), dehydrogenase, β-glucosidase, phosphatase, urease and protease activities, mineralized C (Cm), and potentially mineralizable C (C0) were determined. In 4 years the recently cultivated tepetates (Rt and Ro) increased the values of these variables in relation to the non-cultivated tepetates (Tv and Td), indicating that the incorporation of tepetates to the agriculture improved their biochemical properties. Enzymatic activity, Cm and C0 increased with the years of cultivation and they were significantly higher with Ti and To, suggesting higher SOC availability for microbiology with these managements, likely due to a higher supply of organic substrates because fertilizers with crop residues (Ti) and organic manures (To) were added. Results also demonstrated that an appropriate management of tepetates produces a significant increase of SOC and Nt, leading to an improvement of their biochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alef K (1995) Dehydrogenase activity. In: Alef K and Nannipieri P (eds) Methods on Applied Soil Microbiology and Biogeochemistry. Academic Press, London, pp 228–231

    Google Scholar 

  • Álvarez D, Ferrera R, Etchevers JD (2000) Actividad microbiana en tepetates con incorporación de residuos orgánicos. Agrociencia 34:523–532

    Google Scholar 

  • Bonmatí M, Ceccanti B, Nannipieri P (1998) Protease extraction from soil by sodium pyrophosphate and chemical characterization of the extracts. Soil Biol Biochem 30:2113–2125

    Article  Google Scholar 

  • Bremner JM (1996) Nitrogen-Total. In: Sparks DL (ed) Methods of soil analysis. part 3 chemical methods. American Society of Agronomy-Soil Science Society of America, Madison, WI, USA, pp 1085–1121

    Google Scholar 

  • Caravaca F, Masciandaro G, Ceccanti B (2002) Land use in relation to soil chemical and biochemical properties in a semiarid mediterranean environment. Soil Till Res 68:23–30

    Article  Google Scholar 

  • Casida L, Klein DA, Santoro R (1964) Soil dehydrogenase activity. Soil Sci 98:371–378

    Article  CAS  Google Scholar 

  • Ceccanti B, Alcañiz JM, Gispert M, Gassiot M (1986) Characterization of organic matter from two different soils by pyrolysis-gas chromatography and isoelectrofocusing. Soil Sci 142:83–90

    Article  CAS  Google Scholar 

  • Ceccanti B, Pezzarossa B, Gallardo JF, Masciandaro G (1994) Bio-tests as markers of soil utilization and fertility. Geomicrobiol J 11:309–316

    Article  Google Scholar 

  • Dick RP, Breakwill D, Turco R (1996) Soil enzyme activities and biodiversity measurements as integrating biological indicators. In: Doran JW, Jones AJ (eds) Handbook of methods for assessment of soil quality. Soil Science Society of America, Madison, WI, USA, pp 247–272

    Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America Special Publication n° 35, Madison, WI, USA, pp 3–21

    Google Scholar 

  • Eivazi F, Zakaria A (1993) β-Glucosidase activity in soils amended with sewage sludge. Agric Ecosyst Environ 43:155–161

    Article  CAS  Google Scholar 

  • Elliot ET, Burke IC, Monz CA, Frey SD (1994) Terrestrial carbon pools: preliminary data from the corn belt and great plains regions. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds) Defining soil quality for a sustainable environment. Soil Science Society of America Special Publication N° 35, Madison, WI USA, pp 179–191

    Google Scholar 

  • Etchevers JD, Brito H (1997) Levantamiento nutrimental de los tepetates de méxico y tlaxcala. In: Zebrowski C, Quantin P, Trujillo G (eds) Suelos volcánicos endurecidos. ORSTOM, Quito, Perú, pp 202–212

    Google Scholar 

  • Etchevers JD, Cruz L, Mares J, Zebrowski C (1992) Fertilidad de los tepetates. I fertilidad actual y potencial de los tepetates de la vertiente occidental de la sierra nevada (méxico). Terra 10:379–384

    Google Scholar 

  • Etchevers JD, Hidalgo C, Prat C, Quantin P (2006) Tepetates of Mexico. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, USA, pp 1745–1748

    Google Scholar 

  • Fernández JM, Plaza C, Hernández D, Polo A (2007) Carbon mineralization in an arid soil amended with thermally-dried and composted sewage sludges. Geoderma 137:497–503

    Article  Google Scholar 

  • Fetcher U, Vera A, Werner G (1997) Erosión hídrica en un suelo volcánico endurecido (tepetate t3) en el bloque de Tlaxcala, México. In: Zebroski C, Quantin P, Trujillo G (eds) Suelos volcánicos endurecidos. ORSTOM, Quito, pp 351–358

    Google Scholar 

  • García C, Hernández T, Costa F, Ceccanti C (1994) Biochemical parameters in soil regenerated by the addition of organic wastes. Waste Manage Res 12:454–466

    Google Scholar 

  • García C, Hernández T, Costa F (1997) Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Commun Soil Sci Plan 28:123–134

    Article  Google Scholar 

  • Gil-Sotres F, Trasar C, Leirós MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  CAS  Google Scholar 

  • Hernández T, García C (2003) Estimación de la respiración microbiana del suelo. In: García C, Gil F, Hernández T, Trasar C (eds) Técnicas de análisis de parámetros bioquímicos en suelos medida de actividades enzimáticas y biomasa microbiana. Editorial Mundi-Prensa, Madrid, Spain, pp 311–346

    Google Scholar 

  • Hidalgo C (1996) Étude d’horizons indurés á comportement de fragipan, appelés tepetates, dans les sols volcaniques de la vallée de Mexico Contribution à la connaissance de leurs caractères et de leur formation. ORSTOM, Paris, France

    Google Scholar 

  • Kandeler E, Eder G (1993) Effect of cattle slurry in grassland on microbial biomass and on activities of various enzymes. Biol Fertil Soils 16:246–254

    Article  Google Scholar 

  • Karlen DL, Mausbach MJ, Doran JW, Cline RG, Harris RF, Schuman GE (1997) Soil quality: a concept, definition, and framework for evaluation. Soil Sci Soc Am J 61:4–10

    Article  CAS  Google Scholar 

  • Ladd JN, Butler JH (1972) Short-term assay of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biol Biochem 4:19–30

    Article  CAS  Google Scholar 

  • Levi R, Riffaldi R, Saviozzi A (1990) Carbon mineralization in soil amended with different organic materials. Agric Ecosyst Environ 31:325–335

    Article  Google Scholar 

  • Masciandaro G, Ceccanti B (1999) Assessing soil quality in different agro-ecosystems through biochemical and chemico-structural properties of humic substances. Soil Till Res 51:129–137

    Article  Google Scholar 

  • Molina JA, Clap CE, Shaffer MJ, Chichester FW, Larson WE (1983) A model of nitrogen and carbon transformation in soil: description, calibration and behavior. Soil Sci Soc Am J 47:85–91

    Article  CAS  Google Scholar 

  • Murayama S, Asakawa Y, Ohno Y (1990) Chemical properties of subsurface peats and their decomposition kinetics under field conditions. Soil Sci Plant Nutr 36:129–140

    Article  CAS  Google Scholar 

  • Murwira HK, Kirchmann y H, Swift MJ (1990) The effect of moisture on the decomposition rate of cattle manure. Plant Soil 122:197–199

    Article  Google Scholar 

  • Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016

    Article  CAS  Google Scholar 

  • Nannipieri P, Sequi P, Fusi P (1996) Humic and enzyme activity. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, The Netherlands, pp 293–328

    Chapter  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Pascual JA, García C, Hernández T, Moreno JL, Ros M (2000) Soil microbial as a biomarker of degradation and remediation processes. Soil Biol Biochem 32:1877–1883

    Article  CAS  Google Scholar 

  • Quantin P, Prat C, Zebrowski C (1998) Soil restoration and conservation: the “tepetates”-indurate volcanic soils-in mexico. In: Harper D, Brown T (eds) The sustainable management of tropical catchments. John Wiley & Sons, New York, USA, pp 109–119

    Google Scholar 

  • Riffaldi R, Saviozzi A, Levi R (1996) C mineralization kinetics as influenced by soil properties. Biol Fertil Soils 22:293–298

    Article  CAS  Google Scholar 

  • Saviozzi A, Levi R, Riffaldi R (1993) Mineralization parameters from organic materials added to soil as a function of their chemical composition. Bioresour Technol 45:131–135

    Article  CAS  Google Scholar 

  • Schnürer J, Clarholm M, Rosswall T (1985) Microbial biomass and activity in an agricultural soil with different organic matter contents. Soil Biol Biochem 17:611–618

    Article  Google Scholar 

  • Smith JL, Schnabel RR, Mc Neal BL, Campbell GS (1980) Potential errors in the first-order model for estimating soil nitrogen mineralization potentials. Soil Sci Soc Am J 44:996–1000

    Article  CAS  Google Scholar 

  • Stanford G, Smith SJ (1972) Nitrogen mineralization potential of soil. Soil Sci Soc Am J 36:465–472

    Article  CAS  Google Scholar 

  • Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle JS, Bottomly PS, Bezdicek D, Smith S, Tabatabai MA, Wollum A (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. ASA-SSSA, Madison WI, USA, pp 775–833

    Google Scholar 

  • Tate RL III (1987) Ecosystem management and soil organic matter level. In: Tate RL III (ed) Soil organic matter: biological and ecological effects. Wiley & Sons, New York, USA, pp 260–280

    Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith J (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35:273–284

    Article  CAS  Google Scholar 

  • Werner G (1992) Suelos volcánicos endurecidos (tepetates) en el estado de Tlaxcala: Distribución, rehabilitación, manejo y conservación. Terra 10:318–331

    Google Scholar 

  • Zagal E, Rodríguez N, Vidal I, Quezada L (2002) Actividad microbiana en un suelo de origen volcánico bajo distinto manejo agronómico. Agricultura Técnica 62:297–309

    Google Scholar 

  • Zebrowski C (1992) Los suelos volcánicos endurecidos de américa latina. Terra 10:15–23

    Google Scholar 

Download references

Acknowledgments

Authors thank the European Union for the support given to the REVOLSO Project (INCO-DEV Program) and the Spanish Ministry of Education & Science for the scholarship; as well as the landowner and people who collaborated in the sampling of the plots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Pajares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajares, S., Gallardo, J.F., Etchevers, J.D. (2011). Enzymatic Activity and Carbon Mineralization in Mexican Tepetates Cultivated Under Different Management Practices. In: Trasar-Cepeda, C., Hernández, T., García, C., Rad, C., González-Carcedo, S. (eds) Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21162-1_4

Download citation

Publish with us

Policies and ethics